Skip to main content

Advertisement

Log in

Cardiac surgery-associated acute kidney injury and perioperative plasma viscosity: is there a relationship?

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Plasma viscosity (PV) is a key factor in microcirculatory flow resistance and capillary perfusion during hemodilution, we hypothesized a possible relationship between cardiac surgery-associated acute kidney injury (CSA-AKI) and PV. We conducted a prospective, observational, single-center study on 50 adult cardiac surgery patients with cardiopulmonary bypass (age 64 years, male sex 80%, baseline serum creatinine 1.04 mg/dL). We assessed perioperative characteristics, management, short-term outcomes, blood analysis, PV, serum creatinine, and diuresis. CSA-AKI was identified using KDIGO criteria. Data were collected at 10 time points during the first perioperative week. CSA-AKI occurred in 17 patients (34%): 12 (24%) stage 1, 1 (2%) stage 2, and 4 (8%) stage 3. Most patients (88%) developed CSA-AKI within 48 h post-surgery. Patients with CSA-AKI had higher body mass index (BMI), more frequent chronic kidney disease (CKD), and lower hemoglobin and hematocrit levels. The median baseline PV for the entire cohort was 1.50 cP on EDTA and 1.37 cP on citrate. No significant differences in PV levels were found between patients with CSA-AKI and normal kidney function, both at baseline and at the 48-h. Logistic and Cox regression analyses showed no significant relationship between PV and CSA-AKI. However, CSA-AKI was related to increased BMI, lower hemoglobin and hematocrit levels, and pre-existing CKD. The present study found no significant association between PV and CSA-AKI. Nevertheless, more research is needed to validate this finding and to investigate the role of PV in other clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Deidentified data are available on reasonable request from the corresponding author.

References

  1. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8. https://doi.org/10.1001/jama.294.7.813.

    Article  CAS  PubMed  Google Scholar 

  2. Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, et al. acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med. 2016;6(2):116–28. https://doi.org/10.1159/000442300.

    Article  PubMed  Google Scholar 

  3. Ortega-Loubon C, Fernandez-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E. Cardiac surgery-associated acute kidney injury. Ann Card Anaesth. 2016;19(4):687–98. https://doi.org/10.4103/0971-9784.191578.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Srivastava V, D’Silva C, Tang A, Sogliani F, Ngaage DL. The impact of major perioperative renal insult on long-term renal function and survival after cardiac surgery. Interact Cardiovasc Thorac Surg. 2012;15(1):14–7. https://doi.org/10.1093/icvts/ivs106.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Horne KL, Packington R, Monaghan J, Reilly T, Selby NM. Three-year outcomes after acute kidney injury: results of a prospective parallel group cohort study. BMJ Open. 2017;7(3):e015316. https://doi.org/10.1136/bmjopen-2016-015316.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Schurle A, Koyner JL. CSA-AKI: incidence, epidemiology, clinical outcomes, and economic impact. J Clin Med. 2021;10(24):5764. https://doi.org/10.3390/jcm10245746.

    Article  Google Scholar 

  7. Yu Y, Li C, Zhu S, Jin L, Hu Y, Ling X, et al. Diagnosis, pathophysiology and preventive strategies for cardiac surgery-associated acute kidney injury: a narrative review. Eur J Med Res. 2023;28(1):45. https://doi.org/10.1186/s40001-023-00990-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang Y, Bellomo R. Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment. Nat Rev Nephrol. 2017;13(11):697–711. https://doi.org/10.1038/nrneph.2017.119.

    Article  PubMed  Google Scholar 

  9. Tsai AG, Friesenecker B, McCarthy M, Sakai H, Intaglietta M. Plasma viscosity regulates capillary perfusion during extreme hemodilution in hamster skinfold model. Am J Physiol. 1998;275(6):H2170–80. https://doi.org/10.1152/ajpheart.1998.275.6.H2170.

    Article  CAS  PubMed  Google Scholar 

  10. Guerci P, Tran N, Menu P, Losser MR, Meistelman C, Longrois D. Impact of fluid resuscitation with hypertonic-hydroxyethyl starch versus lactated ringer on hemorheology and microcirculation in hemorrhagic shock. Clin Hemorheol Microcirc. 2014;56(4):301–17. https://doi.org/10.3233/CH-141663.

    Article  CAS  PubMed  Google Scholar 

  11. Cabrales P, Tsai AG. Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions. Am J Physiol Heart Circ Physiol. 2006;291(5):H2445–52. https://doi.org/10.1152/ajpheart.00394.2006.

    Article  CAS  PubMed  Google Scholar 

  12. Valeanu L, Andrei S, Ginghina C, Robu C, Ciurciun A, Balan C, et al. Perioperative trajectory of plasma viscosity: a prospective, observational, exploratory study in cardiac surgery. Microcirculation. 2022;29(4–5):e12777. https://doi.org/10.1111/micc.12777.

    Article  CAS  PubMed  Google Scholar 

  13. Kesmarky G, Kenyeres P, Rabai M, Toth K. Plasma viscosity: a forgotten variable. Clin Hemorheol Microcirc. 2008;39(1–4):243–6.

    Article  PubMed  Google Scholar 

  14. Somer T, Meiselman HJ. Disorders of blood viscosity. Ann Med. 1993;25(1):31–9. https://doi.org/10.3109/07853899309147854.

    Article  CAS  PubMed  Google Scholar 

  15. Lowe G, Rumley A, Norrie J, Ford I, Shepherd J, Cobbe S, et al. Blood rheology, cardiovascular risk factors, and cardiovascular disease: the West of Scotland Coronary Prevention Study. Thromb Haemost. 2000;84(4):553–8.

    CAS  PubMed  Google Scholar 

  16. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84. https://doi.org/10.1159/000339789.

    Article  PubMed  Google Scholar 

  17. Mao H, Katz N, Ariyanon W, Blanca-Martos L, Adybelli Z, Giuliani A, et al. Cardiac surgery-associated acute kidney injury. Cardiorenal Med. 2013;3(3):178–99. https://doi.org/10.1159/000353134.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fuhrman DY, Kellum JA. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury. Curr Opin Anaesthesiol. 2017;30(1):60–5. https://doi.org/10.1097/ACO.0000000000000412.

    Article  CAS  PubMed  Google Scholar 

  19. Abou-Arab O, Kamel S, Beyls C, Huette P, Bar S, Lorne E, et al. Vasoplegia after cardiac surgery is associated with endothelial glycocalyx alterations. J Cardiothorac Vasc Anesth. 2020;34(4):900–5. https://doi.org/10.1053/j.jvca.2019.09.004.

    Article  CAS  PubMed  Google Scholar 

  20. Guinot PG, Durand B, Besnier E, Mertes PM, Bernard C, Nguyen M, et al. Epidemiology, risk factors and outcomes of norepinephrine use in cardiac surgery with cardiopulmonary bypass: a multicentric prospective study. Anaesth Crit Care Pain Med. 2023;42(3):101200. https://doi.org/10.1016/j.accpm.2023.101200.

    Article  PubMed  Google Scholar 

  21. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost. 2003;29(5):435–50. https://doi.org/10.1055/s-2003-44551.

    Article  CAS  PubMed  Google Scholar 

  22. Pop GA, Duncker DJ, Gardien M, Vranckx P, Versluis S, Hasan D, et al. The clinical significance of whole blood viscosity in (cardio)vascular medicine. Neth Heart J. 2002;10(12):512–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chien S, King RG, Skalak R, Usami S, Copley AL. Viscoelastic properties of human blood and red cell suspensions. Biorheology. 1975;12(6):341–6. https://doi.org/10.3233/bir-1975-12603.

    Article  CAS  PubMed  Google Scholar 

  24. Secomb TW, Pries AR. Blood viscosity in microvessels: experiment and theory. C R Phys. 2013;14(6):470–8. https://doi.org/10.1016/j.crhy.2013.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurtz TW, Slavicek JM, Hsu CH. Blood viscosity in experimental acute renal failure. Nephron. 1982;30(4):348–51. https://doi.org/10.1159/000182515.

    Article  CAS  PubMed  Google Scholar 

  26. Dittrich S, Priesemann M, Fischer T, Boettcher W, Muller C, Dahnert I, et al. Hemorheology and renal function during cardiopulmonary bypass in infants. Cardiol Young. 2001;11(5):491–7. https://doi.org/10.1017/s1047951101000713.

    Article  CAS  PubMed  Google Scholar 

  27. Sugimori H, Tomoda F, Koike T, Kurosaki H, Masutani T, Ohara M, et al. Increased blood viscosity is associated with reduced renal function and elevated urinary albumin excretion in essential hypertensives without chronic kidney disease. Hypertens Res. 2013;36(3):247–51. https://doi.org/10.1038/hr.2012.172.

    Article  CAS  PubMed  Google Scholar 

  28. Habib RH, Zacharias A, Schwann TA, Riordan CJ, Engoren M, Durham SJ, et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization: implications on operative outcome. Crit Care Med. 2005;33(8):1749–56. https://doi.org/10.1097/01.ccm.0000171531.06133.b0.

    Article  PubMed  Google Scholar 

  29. Huybregts RA, de Vroege R, Jansen EK, van Schijndel AW, Christiaans HM, van Oeveren W. The association of hemodilution and transfusion of red blood cells with biochemical markers of splanchnic and renal injury during cardiopulmonary bypass. Anesth Analg. 2009;109(2):331–9. https://doi.org/10.1213/ane.0b013e3181ac52b2.

    Article  CAS  PubMed  Google Scholar 

  30. Karkouti K, Beattie WS, Wijeysundera DN, Rao V, Chan C, Dattilo KM, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg. 2005;129(2):391–400. https://doi.org/10.1016/j.jtcvs.2004.06.028.

    Article  CAS  PubMed  Google Scholar 

  31. Shi N, Liu K, Fan Y, Yang L, Zhang S, Li X, et al. The association between obesity and risk of acute kidney injury after cardiac surgery. Front Endocrinol (Lausanne). 2020;11:534294. https://doi.org/10.3389/fendo.2020.534294.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Billings FTt, Pretorius M, Schildcrout JS, Mercaldo ND, Byrne JG, Ikizler TA, et al. Obesity and oxidative stress predict AKI after cardiac surgery. J Am Soc Nephrol. 2012;23(7):1221–8. https://doi.org/10.1681/ASN.2011090940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Sullivan KE, Byrne JS, Hudson A, Murphy AM, Sadlier DM, Hurley JP. The effect of obesity on acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg. 2015;150(6):1622–8. https://doi.org/10.1016/j.jtcvs.2015.08.082.

    Article  PubMed  Google Scholar 

  34. Zou Z, Zhuang Y, Liu L, Shen B, Xu J, Luo Z, et al. Role of body mass index in acute kidney injury patients after cardiac surgery. Cardiorenal Med. 2017;8(1):9–17. https://doi.org/10.1159/000477824.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fu HY, Chou NK, Chen YS, Yu HY. Risk factor for acute kidney injury in patients with chronic kidney disease receiving valve surgery with cardiopulmonary bypass. Asian J Surg. 2021;44(1):229–34. https://doi.org/10.1016/j.asjsur.2020.05.024.

    Article  PubMed  Google Scholar 

  36. Gaffney AM, Sladen RN. Acute kidney injury in cardiac surgery. Curr Opin Anaesthesiol. 2015;28(1):50–9. https://doi.org/10.1097/ACO.0000000000000154.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

DL, SA, LV, GS conceived the study; LV, CR, TB collected and analyzed data and edited the manuscript; LV, SA, GS analyzed data and wrote the first draft; SA, DL supervised the project. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Gabriel Stefan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki and approved by the Institutional Review Board of Emergency Institute for Cardiovascular Disease, “Prof. dr. C. C. Iliescu”, Bucharest, Romania (registration number 22927/01.10.2018).

Patient consent

Informed written consent was obtained from all subjects involved in the study for the use of routinely collected data for research purposes as part of their regular medical care in the contract of the Institutional Review Board of Emergency Institute for Cardiovascular Disease, “Prof. dr. C. C. Iliescu”, Bucharest, Romania.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 162 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valeanu, L., Andrei, S., Stefan, G. et al. Cardiac surgery-associated acute kidney injury and perioperative plasma viscosity: is there a relationship?. J Clin Monit Comput 37, 1553–1561 (2023). https://doi.org/10.1007/s10877-023-01065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-023-01065-7

Keywords

Navigation