Skip to main content

Advertisement

Log in

Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Heart rate variability analysis is a recognized non-invasive tool that is used to assess autonomic nervous system regulation in various clinical settings and medical conditions. A wide variety of HRV analysis methods have been proposed, but they all require a certain number of cardiac beats intervals. There are many ways to record cardiac activity: electrocardiography, phonocardiography, plethysmocardiography, seismocardiography. However, the feasibility of performing HRV analysis with these technologies and particularly their ability to detect autonomic nervous system changes still has to be studied. In this study, we developed a technology allowing the simultaneous monitoring of electrocardiography, phonocardiography, seismocardiography, photoplethysmocardiography and piezoplethysmocardiography and investigated whether these sensors could be used for HRV analysis. We therefore tested the evolution of several HRV parameters computed from several sensors before, during and after a postural change. The main findings of our study is that even if most sensors were suitable for mean HR computation, some of them demonstrated limited agreement for several HRV analyses methods. We also demonstrated that piezoplethysmocardiography showed better agreement with ECG than other sensors for most HRV indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. European Society of Cardiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J. 1996;17(3):354–81. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868.

  2. Akselrod S, Amitayt Y, Lang RM, Mor-Avi V, Keselbrener L. Spectral analysis of left ventricular area variability as a tool to improve the understanding of cardiac autonomic control. Physiol Meas. 2000;21(2):319–31. https://doi.org/10.1088/0967-3334/21/2/311.

    Article  CAS  PubMed  Google Scholar 

  3. Jeanne M, Logier R, De Jonckheere J, Tavernier B. Validation of a graphic measurement of heart rate variability to assess analgesia/nociception balance during general anesthesia. In: Conference proceedings. Annual international conference on IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society Annual conference; 2009, p. 1840–3. https://doi.org/10.1109/iembs.2009.5332598.

  4. Jeanne M, Clément C, De Jonckheere J, Logier R, Tavernier B. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J Clin Monit Comput. 2012;26:289–94. https://doi.org/10.1007/s10877-012-9354-0.

    Article  CAS  PubMed  Google Scholar 

  5. Kleiger RE, Miller JP, Bigger JT, Moss AJ, the Multicenter Post-Infarction Research Group. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59:256–62. https://doi.org/10.1016/0002-9149(87)90795-8.

    Article  CAS  PubMed  Google Scholar 

  6. Malik M, Farrell T, Cripps T, Camm AJ. Heart rate variability in relation to prognosis after myocardial infarction: selection of optimal processing techniques. Eur Heart J. 1989;10:1060–74. https://doi.org/10.1093/oxfordjournals.eurheartj.a059428.

    Article  CAS  PubMed  Google Scholar 

  7. Bellavere F, Balzani I, De Masi G, et al. Power spectral analysis of heart rate variation improves assessment of diabetic cardiac autonomic neuropathy. Diabetes. 1992;41:633–40. https://doi.org/10.2337/diab.41.5.633.

    Article  CAS  PubMed  Google Scholar 

  8. Van den Akker TJ, Koelman ASM, Hogenhuis LAH, Rompelman G. Heart rate variability and blood pressure oscillations in diabetics with utonomic neuropathy. Automedica. 1983;4:201–8.

    Google Scholar 

  9. Szurhaj W, Troussière A-C, Logier R, Derambure P, Tyvaert L, Semah F, Ryvlin P, De Jonckheere J. Ictal changes in parasympathetic tone: prediction of postictal oxygen desaturation. Neurology. 2015;85(14):1233–9. https://doi.org/10.1212/wnl.0000000000001994.

    Article  CAS  PubMed  Google Scholar 

  10. Ponnusamy A, Marques JLB, Reuber M. Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia. 2012;53(8):1314–21. https://doi.org/10.1111/j.1528-1167.2012.03518.x.

    Article  PubMed  Google Scholar 

  11. Jeanne M, Logier R, De Jonckheere J, Tavernier B. Heart rate variability during total intravenous anesthesia: effects of nociception and analgesia. Auton Neurosci. 2009;147:91–6. https://doi.org/10.1016/j.autneu.2009.01.005.

    Article  CAS  PubMed  Google Scholar 

  12. Broucqsault-Dédrie C, De Jonckheere J, Jeanne M, Nseir S. Measurement of heart rate variability to assess pain in sedated critically ill patients: a prospective observational study. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0147720.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oh J, Cho D, Park J, Na SH, Kim J, Heo J, Shin CS, Kim JJ, Park JY, Lee B. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning. Physiol Meas. 2018;39(3):035004. https://doi.org/10.1088/1361-6579/aaab07.

    Article  PubMed  Google Scholar 

  14. Faye PM, De Jonckheere J, Logier R, Kuissi E, Jeanne M, Rakza T, et al. Newborn infant pain assessment using heart rate variability analysis. Clin J Pain. 2010;26:777–82. https://doi.org/10.1097/ajp.0b013e3181ed1058.

    Article  PubMed  Google Scholar 

  15. Coggins SA, Weitkamp JH, Grunwald L, Stark AR, Reese J, Walsh W, Wynn JL. Heart rate characteristic index monitoring for bloodstream infection in an NICU: a 3-year experience. Arch Dis Child Fetal Neonatal Ed. 2016;101(4):F329–32. https://doi.org/10.1136/archdischild-2015-309210.

    Article  PubMed  Google Scholar 

  16. Mirvis DM, Goldberger AL. Electrocardiography. In: Zipes DP, Libby P, Bonow RO, et al., editors. Braunwald’s heart disease: a textbook of cardiovascular Medicine. 11th ed. Philadelphia: W.B. Saunders Company; 2018.

    Google Scholar 

  17. Abbas K, Bassam R. Phonocardiography signal processing. In: Enderle JD, editor. synthesis lectures on biomedical engineering. Storrs: University of Connecticut; 2009.

    Google Scholar 

  18. Alian AA, Shelley KH. Photoplethysmography. Best Pract Res Clin Anaesthesiol. 2014;28:395–406. https://doi.org/10.1016/j.bpa.2014.08.006.

    Article  PubMed  Google Scholar 

  19. Giovangrandi L, Inan OT, Wiard RM, Etemadi M, Kovacs GTA. Ballistocardiography—a method worth revisiting. In: Conference proceedings—IEEE Engineering in Medicine and Biology Society 2011; 2014. p. 4279–82 https://doi.org/10.1109/iembs.2011.6091062.

  20. Zanetti JM, Tavakolian K. Seismocardiography: past, present and future. In: 35th Annual international conference of the IEEE EMBS Osaka, Japan; 2013. https://doi.org/10.1109/embc.2013.6611170.

  21. Nakaya Y, Mori H. Magnetocardiography. Clin Phys Physiol Meas. 1992;13(3):191–229.

    Article  CAS  Google Scholar 

  22. Nishimura RA, Abel MD. Assessment of diastolic function of the heart: background and current applications of doppler echocardiography. Mayo Clin Proc. 1989;64:181. https://doi.org/10.1016/s0025-6196(12)65673-0.

    Article  CAS  PubMed  Google Scholar 

  23. Sherwood A, Allen MT, Fahrenberg J, Kelsey RM, Lovallo WR, Van Dooren LJP. Methodological guidelines for impedance cardiography. Psychophysiology. 1990;27(1):568–98. https://doi.org/10.1111/j.1469-8986.1990.tb02171.x.

    Article  Google Scholar 

  24. Sakamoto T, Imasaka R, Taki H, Sato T, Yoshioka M, Inoue K, Fukuda T, Sakai H. Feature-based correlation and topological similarity for interbeat interval estimation using ultrawideband radar. IEEE Trans Biomed Eng. 2016;63(4):747–57. https://doi.org/10.1109/tbme.2015.2470077.

    Article  PubMed  Google Scholar 

  25. Li X, Chen J, Zhao G, Pietikainen M. Remote heart rate measurement from face videos under realistic situations. In: IEEE conference on computer vision and pattern recognition; 2014. https://doi.org/10.1109/cvpr.2014.543.

  26. Javaid AQ, Fesmire FN, Weitnauer MA, Inan OT. Towards robust estimation of systolic time intervals using head-to-foot and dorso-ventral components of sternal acceleration signals. In: 2015 IEEE 12th international conference on wearable and implantable body sensor networks (BSN); 2015. https://doi.org/10.1109/bsn.2015.7299377.

  27. Georgiou K, Larentzakis AV, Khamis NN, Alsuhaibani GI, Alaska YA, Giallafos EJ. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Med (Plovdiv). 2018;60(1):7–20. https://doi.org/10.2478/folmed-2018-0012.

    Article  Google Scholar 

  28. Yu S. Photoplethysmography revisited: from contact to noncontact, from point to imaging. IEEE Trans Biomed Engineering. 2015;63(3):463–77. https://doi.org/10.1109/tbme.2015.2476337.

    Article  Google Scholar 

  29. Corral LF, Paez G, Strojnik M. Optimal wavelength selection for non-contact reflection photoplethysmography. In: Proceedings of SPIE, vol. 8011; 2011. https://doi.org/10.1117/12.903190.

  30. Logier R, De Jonckheere J, Dassonneville A. An efficient algorithm for R–R intervals series filtering. In: Conference proceedings—IEEE Engineering in Medicine and Biology Society, vol. 6; 2004. p. 3937–40. https://doi.org/10.1109/iembs.2004.1404100.

  31. Mallat S. A wavelet tour of signal processing. San Diego: Academic Press; 1998.

    Google Scholar 

  32. Deplanque D, Sénéchal-Cohen S, Lemaire F, et al. French Jardé’s law and European regulation on drug trials: harmonization and implementation of new rules. Therapie. 2017;72(1):73–80. https://doi.org/10.1016/j.therap.2016.12.006.

    Article  PubMed  Google Scholar 

  33. Kamran H, Naggar I, Oniyuke F, Palomeque F, Chokshi P, Salciccioli L, Stewart M, Lazar JM. Determination of heart rate variability with an electronic stethoscope. Clin Auton Res. 2013;23:41–7. https://doi.org/10.1007/s10286-012-0177-3.

    Article  PubMed  Google Scholar 

  34. Siecinski S, Kostka PS, Tkacz EJ. Heart rate variability analysis on CEBS database signals. In: Conference proceedings—IEEE Engineering in Medicine and Biology Society, 2018; 2018. p. 5697–700. https://doi.org/10.1109/embc.2018.8513551.

  35. Ramos-Castro J, Moreno J, Miranda-Vidal H, García-González MA, Fernández-Chimeno M, Rodas G, Capdevila Ll. Heart rate variability analysis using a seismocardiogram signal. In: 34th Annual international conference of the IEEE EMBS; 2012. https://doi.org/10.1109/embc.2012.6347274.

  36. Schafer A, Vagedes J. How accurate is pulse rate variability as an estimate of heart rate variability? A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol. 2013;166:15–29. https://doi.org/10.1016/j.ijcard.2012.03.119.

    Article  PubMed  Google Scholar 

  37. Gil E, Orini M, Bailon R, Vergara JM, Mainardi L, Laguna P. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas. 2010;31:1271–90. https://doi.org/10.1088/0967-3334/31/9/015.

    Article  CAS  PubMed  Google Scholar 

  38. Lu G, Yang F, Taylor JA, Stein JF. A comparison of photoplethysmography and ECG recording to analyze heart rate variability in healthy subjects. J Med Eng Technol. 2009;33(8):634–41. https://doi.org/10.3109/03091900903150998.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. De Jonckheere.

Ethics declarations

Conflict of interest

Julien De Jonckheere, Mathieu Jeanne and Régis Logier are shareholders of and scientific consultants for Mdoloris Medical Systems (that commercializes ANI monitor). Other authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlier, P., Cabon, M., Herman, C. et al. Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis. J Clin Monit Comput 34, 743–752 (2020). https://doi.org/10.1007/s10877-019-00382-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-019-00382-0

Keywords

Navigation