Skip to main content

Advertisement

Log in

Performance and applications of bedside visual inspection of airway pressure–time curve profiles for estimating stress index in patients with acute respiratory distress syndrome

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

To determine the performance of bedside visual inspection of airway pressure-time (Paw–t) curve profiles (VI) for estimating stress index (SI) in patients with acute respiratory distress syndrome (ARDS). A prospective study in 30 subjects with ARDS receiving mechanical ventilation at two peak inspiratory flow (PIF) settings: 60 or 40 L/min. For each study session, two physicians inspected real-time Paw–t waveforms from mechanical ventilator’s monitoring screens at bedside for 30 s and interpreted which of the three patterns (tidal recruitment, noninjurious ventilation or tidal overdistension) the Paw–t curve profile was compatible with. Subsequently, the study was repeated again at the second PIF setting. SI was derived from a standardized dedicated software program and categorized into three groups: SI < 0.9, or tidal recruitment; SI = 0.9–1.05, or noninjurious ventilation; and SI > 1.05, or tidal overdistension. The lower PIF setting increased the sensitivity of VI to correctly estimate SI (75% vs. 50%; p = 0.005). At PIF 40 L/min, the likelihood ratio of a positive test was 3.6, 5.4 or 7 if the Paw–t curve profile was interpreted as noninjurious ventilation, tidal recruitment or tidal overdistension, respectively. The likelihood ratio of a negative test ranged from 0.55 for tidal recruitment to 0.32 and 0.19 for noninjurious ventilation and tidal overdistension, respectively. Experience in mechanical ventilation did not influence the accuracy. Bedside VI is moderately accurate for estimating SI and may be used to monitor injurious ventilation in patients with ARDS, in addition to plateau airway pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Pplat:

End-inspiratory plateau airway pressure

SI:

Stress index

Paw–t:

Airway pressure–time

VI:

Visual inspection of airway pressure–time curve profiles

PIF:

Peak inspiratory flow

VT :

Tidal volume

BF:

Baseline flow

LF:

Lower flow

LE:

Less experience

ME:

More experience

LR:

Likelihood ratio

PLR:

Likelihood ratio of a positive test

NLR:

Likelihood ratio of a negative test

References

  1. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157(1):294–323.

    Article  PubMed  CAS  Google Scholar 

  2. Slutsky A, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013;369(22):2126–36.

    Article  PubMed  CAS  Google Scholar 

  3. Curley GF, Laffey JG, Zhang H, Slutsky AS. Biotrauma and ventilator-induced lung injury: Clinical Implications. Chest. 2016;150(5):1109–17.

    Article  PubMed  Google Scholar 

  4. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342:1301–18.

    Article  Google Scholar 

  5. Kallet RH. The complexity of interpreting plateau pressure in ARDS. Respir Care. 2015;60(1):147–9.

    Article  PubMed  Google Scholar 

  6. Hager DN, Krishnan JA, Hayden DL, Brower RG; ARDS Clinical Trials Network. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;172(10):1241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–6.

    Article  PubMed  CAS  Google Scholar 

  8. Seeley E, McAuley DF, Eisner M, Miletin M, Matthay MA, Kallet RH. Respiratory system compliance and severity of hypoxemia as predictors of outcome in the acute respiratory distress syndrome. Thorax. 2008;63(11):994–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Seeley EJ, McAuley DF, Eisner M, Miletin M, Zhuo H, Matthay MA, Kallet RH. Decreased respiratory system compliance on day 6 of mechanical ventilation is a predictor of death in patients with established acute lung injury. Respir Res. 2011;12(1):52.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chiumello D, Carlesso E, Cadringher P, Caironi P, Valenza F, Polli F, Tallarini F, Cozzi P, Cressoni M, Colombo A, Marini JJ, Gattinoni L. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.

    Article  PubMed  Google Scholar 

  11. Grasso S, Terragni P, Mascia L, Fanelli V, Quintel M, Herrmann P, Hedenstierna G, Slutsky AS, Ranieri VM. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004;32:1018–27.

    Article  PubMed  Google Scholar 

  12. Ranieri VM, Zhang H, Mascia L, Aubin M, Lin CY, Mullen JB, Grasso S, Binnie M, Volgyesi GA, Eng P. Slutsky AS. Pressure-time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology. 2000;93:1320–8.

    Article  PubMed  CAS  Google Scholar 

  13. de Perrot M, Imai Y, Volgyesi GA, Waddell TK, Liu M, Mullen JB, McRae K, Zhang H, Slutsky AS, Ranieri VM, Keshavjee S. Effect of ventilator-induced lung injury on the development of reperfusion injury in a rat lung transplant model. J Thorac Cardiovasc Surg. 2002;124(6):1137–44.

    Article  PubMed  Google Scholar 

  14. Gama de Abreu M, Heintz M, Heller A, Szechenyi R, Albrecht DM, Koch T. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg. 2003;96:220–8.

    Article  PubMed  Google Scholar 

  15. Carvalho AR, Spieth PM, Pelosi P, Vidal Melo MF, Koch T, Jandre FC, Giannella-Neto A, de Abreu MG. Ability of dynamic airway pressure curve profile and elastance for positive end-expiratory pressure titration. Intensive Care Med. 2008;34:2291–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ferrando C, Suárez-Sipmann F, Gutierrez A, Tusman G, Carbonell J, García M, Piqueras L, Compañ D, Flores S, Soro M, Llombart A, Belda FJ. Adjusting tidal volume to stress index in an open lung condition optimizes ventilation and prevents overdistension in an experimental model of lung injury and reduced chest wall compliance. Crit Care. 2015;19:9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, Munno I, Ruggiero V, Anaclerio R, Cafarelli A, Driessen B. Fiore T. ARDSnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med. 2007;176:761–7.

    Article  PubMed  Google Scholar 

  18. Huang Y, Yang Y, Chen Q, Liu S, Liu L, Pan C, Yang C, Qiu H. Pulmonary acute respiratory distress syndrome: positive end-expiratory pressure titration needs stress index. J Surg Res. 2013;185:347–52.

    Article  PubMed  Google Scholar 

  19. Chiumello D, Cressoni M, Carlesso E, Caspani ML, Marino A, Gallazzi E, Caironi P, Lazzerini M, Moerer O, Quintel M, Gattinoni L. Bedside selection of positive end-expiratory pressure in mild, moderate, and severe acute respiratory distress syndrome. Crit Care Med. 2014;42:252–64.

    Article  PubMed  Google Scholar 

  20. Terragni PP, Filippini C, Slutsky AS, Birocco A, Tenaglia T, Grasso S, Stripoli T, Pasero D, Urbino R, Fanelli V, Faggiano C, Mascia L, Ranieri VM. Accuracy of plateau pressure and stress index to identify injurious ventilation in patients with acute respiratory distress syndrome. Anesthesiology. 2013;119:880–9.

    Article  PubMed  Google Scholar 

  21. Formenti P, Umbrello M, Graf J, Adams AB, Dries DJ, Marini JJ. Reliability of transpulmonary pressure-time curve profile to identify tidal recruitment/hyperinflation in experimental unilateral pleural effusion. J Clin Monit Comput. 2017;31(4):783–91.

    Article  PubMed  CAS  Google Scholar 

  22. Gattinoni L, Bombino M, Pelosi P, Lissoni A, Pesenti A, Fumagalli R, Tagliabue M. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA. 1994;271(22):1772–9.

    Article  PubMed  CAS  Google Scholar 

  23. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A. LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.

    Article  PubMed  CAS  Google Scholar 

  24. Schmidt GA. Counterpoint: should positive end-expiratory pressure in patients with ARDS be set based on oxygenation? No. Chest. 2012;141(6):1382–4.

    Article  PubMed  Google Scholar 

  25. Kallet RH. Should PEEP titration be based on chest mechanics in patients with ARDS? Respir Care. 2016;61(6):876–90.

    Article  PubMed  Google Scholar 

  26. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA 2012;307:2526–33.

    Google Scholar 

  27. Jaeschke R, Guyatt G, Sackett DL. Users’ guides to the medical literature: III. How to use an article about a diagnostic test: what are the results and will they help me in caring for my patients? The Evidence-Based Medicine Working Group. JAMA. 1994;271:703–7.

    Article  PubMed  CAS  Google Scholar 

  28. Tobin MJ. Mechanical ventilation. N Engl J Med. 1994;330(15):1056–61.

    Article  PubMed  CAS  Google Scholar 

  29. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, Slutsky AS, Della Corte F, Navalesi P. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39(11):2452–7.

    Article  PubMed  Google Scholar 

  30. McGee S. Simplifying likelihood ratios. J Gen Intern Med. 2002;17(8):646–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to Khemajira Karaketklang for statistical assistance; and Sarun Kraivee for his technical assistance with ‘Datalogger’.

Funding

This research received no specific grants from any funding agency in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PW is guarantor for the entire manuscript. PW contributed to the conception, hypothesis, outline, and design of the study; data acquisition; data analysis; drafting the manuscript; and substantial involvement in its revision prior to submission. NY contributed to the design of the study; data acquisition; drafting the manuscript; and substantial involvement in its revision prior to submission.

Corresponding author

Correspondence to Phunsup Wongsurakiat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants or the participants’next of kin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongsurakiat, P., Yuangtrakul, N. Performance and applications of bedside visual inspection of airway pressure–time curve profiles for estimating stress index in patients with acute respiratory distress syndrome. J Clin Monit Comput 33, 281–290 (2019). https://doi.org/10.1007/s10877-018-0153-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-018-0153-0

Keywords

Navigation