Skip to main content
Log in

A comparison of different synchronization measures in electroencephalogram during propofol anesthesia

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Electroencephalogram (EEG) synchronization is becoming an essential tool to describe neurophysiological mechanisms of communication between brain regions under general anesthesia. Different synchronization measures have their own properties to reflect the changes of EEG activities during different anesthetic states. However, the performance characteristics and the relations of different synchronization measures in evaluating synchronization changes during propofol-induced anesthesia are not fully elucidated. Two-channel EEG data from seven volunteers who had undergone a brief standardized propofol anesthesia were then adopted to calculate eight synchronization indexes. We computed the prediction probability (P K ) of synchronization indexes with Bispectral Index (BIS) and propofol effect-site concentration (C eff ) to quantify the ability of the indexes to predict BIS and C eff . Also, box plots and coefficient of variation were used to reflect the different synchronization changes and their robustness to noise in awake, unconscious and recovery states, and the Pearson correlation coefficient (R) was used for assessing the relationship among synchronization measures, BIS and C eff . Permutation cross mutual information (PCMI) and determinism (DET) could predict BIS and follow C eff better than nonlinear interdependence (NI), mutual information based on kernel estimation (KerMI) and cross correlation. Wavelet transform coherence (WTC) in α and β frequency bands followed BIS and C eff better than that in other frequency bands. There was a significant decrease in unconscious state and a significant increase in recovery state for PCMI and NI, while the trends were opposite for KerMI, DET and WTC. Phase synchronization based on phase locking value (PSPLV) in δ, θ, α and γ1 frequency bands dropped significantly in unconscious state, whereas it had no significant synchronization in recovery state. Moreover, PCMI, NI, DET correlated closely with each other and they had a better robustness to noise and higher correlation with BIS and C eff than other synchronization indexes. Propofol caused EEG synchronization changes during the anesthetic period. Different synchronization measures had individual properties in evaluating synchronization changes in different anesthetic states, which might be related to various forms of neural activities and neurophysiological mechanisms under general anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, Anderson WS, Hochberg LR, Cash SS, Brown EN. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci. 2012;109(49):E3377–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Voss L, Sleigh J. Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol. 2007;21(3):313–25.

    Article  PubMed  Google Scholar 

  3. Nallasamy N, Tsao DY. Functional connectivity in the brain: effects of anesthesia. Neuroscientist. 2011;17(1):94–106.

    Article  PubMed  Google Scholar 

  4. Lee U, Mashour GA, Kim S, Noh G-J, Choi B-M. Propofol induction reduces the capacity for neural information integration: implications for the mechanism of consciousness and general anesthesia. Conscious Cogn. 2009;18(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  5. Lee U, Kim S, Noh G-J, Choi B-M, Hwang E, Mashour GA. The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans. Conscious Cogn. 2009;18(4):1069–78.

    Article  PubMed  Google Scholar 

  6. Pereda E, Quiroga RQ, Bhattacharya J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol. 2005;77(1):1–37.

    Article  PubMed  Google Scholar 

  7. Breakspear M. “Dynamic” connectivity in neural systems. Neuroinformatics. 2004;2(2):205–24.

    Article  PubMed  Google Scholar 

  8. Kaminski M, Liang H. Causal influence: advances in neurosignal analysis. Crit Rev Biomed Eng. 2005; 33(4).

  9. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005;116(10):2266–301.

    Article  CAS  PubMed  Google Scholar 

  10. Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry. 2007;61(2):198–209.

    Article  PubMed  Google Scholar 

  11. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci USA. 2008;105(41):16039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li D, Voss LJ, Sleigh JW, Li X. Effects of volatile anesthetic agents on cerebral cortical synchronization in sheep. Anesthesiology. 2013;119(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi K, Mukai N, Sawa T. Simultaneous bicoherence analysis of occipital and frontal electroencephalograms in awake and anesthetized subjects. Clin Neurophysiol. 2014;125(1):194–201.

    Article  PubMed  Google Scholar 

  14. David O, Cosmelli D, Friston KJ. Evaluation of different measures of functional connectivity using a neural mass model. Neuroimage. 2004;21(2):659–73.

    Article  PubMed  Google Scholar 

  15. Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci. 2001;2(10):704–16.

    Article  CAS  PubMed  Google Scholar 

  16. David O, Friston KJ. A neural mass model for meg/eeg: coupling and neuronal dynamics. Neuroimage. 2003;20(3):1743–55.

    Article  PubMed  Google Scholar 

  17. Koskinen M, Seppanen T, Tuukkanen J, Yli-Hankala A, Jantti V. Propofol anesthesia induces phase synchronization changes in EEG. Clin Neurophysiol. 2001;112(2):386–92.

    Article  CAS  PubMed  Google Scholar 

  18. Nicolaou N, Georgiou J. Spatial Analytic Phase Difference of EEG activity during anesthetic-induced unconsciousness. Clin Neurophysiol. 2014;125(10):2122–31.

    Article  CAS  PubMed  Google Scholar 

  19. Abásolo D, Escudero J, Hornero R, Gómez C, Espino P. Approximate entropy and auto mutual information analysis of the electroencephalogram in Alzheimer’s disease patients. Med Biol Eng Comput. 2008;46(10):1019–28.

    Article  PubMed  Google Scholar 

  20. Hall CW Jr, Sarkar A. Mutual information in natural position order of electroencephalogram is significantly increased at seizure onset. Med Biol Eng Comput. 2011;49(2):133–41.

    Article  PubMed  Google Scholar 

  21. Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, de Jonge MV, van Engeland H, Durston S. Changes in the developmental trajectories of striatum in autism. Biol Psychiatry. 2009;66(4):327–33.

    Article  PubMed  Google Scholar 

  22. Moon Y-I, Rajagopalan B, Lall U. Estimation of mutual information using kernel density estimators. Phys Rev E. 1995;52(3):2318.

    Article  CAS  Google Scholar 

  23. Liang Z, Wang Y, Ouyang G, Voss LJ, Sleigh JW, Li X. Permutation auto-mutual information of electroencephalogram in anesthesia. J Neural Eng. 2013;10(2):026004.

    Article  PubMed  Google Scholar 

  24. Liang Z, Liang S, Wang Y, Ouyang G, Li X. Tracking the coupling of two electroencephalogram series in the isoflurane and remifentanil anesthesia. Clin Neurophysiol. 2014.

  25. Andrzejak RG, Schindler K, Rummel C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys Rev E Stat Nonlin Soft Matter Phys. 2012;86(4 Pt 2):046206.

    Article  PubMed  Google Scholar 

  26. Rabbi AF, Azinfar L, Fazel-Rezai R. Seizure prediction using adaptive neuro-fuzzy inference system. Conf Proc IEEE Eng Med Biol Soc. 2013, 2100–2103.

  27. Becker K, Schneider G, Eder M, Ranft A, Kochs EF, Zieglgansberger W, Dodt HU. Anaesthesia monitoring by recurrence quantification analysis of EEG data. PLoS One. 2010;5(1):e8876.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shalbaf R, Behnam H, Sleigh JW, Steyn-Ross DA, Steyn-Ross ML. Frontal-temporal synchronization of EEG signals quantified by order patterns cross recurrence analysis during propofol anesthesia. IEEE Trans Neural Syst Rehabil Eng. 2014.

  29. Zhou D, Thompson WK, Siegle G. MATLAB toolbox for functional connectivity. Neuroimage. 2009;47(4):1590–607.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nunez PL. Electric fields of the brain: the neurophysics of EEG. Oxford: Oxford University Press; 2006.

    Book  Google Scholar 

  31. Li X, Yao X, Fox J, Jefferys JG. Interaction dynamics of neuronal oscillations analysed using wavelet transforms. J Neurosci Methods. 2007;160(1):178–85.

    Article  PubMed  Google Scholar 

  32. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194–208.

    Article  CAS  PubMed  Google Scholar 

  33. Mormann F, Lehnertz K, David P, Elger CE. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys D. 2000;144(3):358–69.

    Article  Google Scholar 

  34. Allefeld C, Kurths J. Multivariate phase synchronization analysis of EEG data. IEICE Trans Fundam Electron Commun Comput Sci. 2003;86(9):2218–21.

    Google Scholar 

  35. Allefeld C, Kurths J. An approach to multivariate phase synchronization analysis and its application to event-related potentials. Int J Bifurcat Chaos. 2004;14(02):417–26.

    Article  Google Scholar 

  36. Rosenblum MG, Pikovsky AS, Kurths J. Phase synchronization of chaotic oscillators. Phys Rev Lett. 1996;76(11):1804.

    Article  CAS  PubMed  Google Scholar 

  37. Li D, Li X, Cui D, Li Z. Phase synchronization with harmonic wavelet transform with application to neuronal populations. Neurocomputing. 2011;74(17):3389–403.

    Article  Google Scholar 

  38. Park H, Kim D-S. Evaluation of the dispersive phase and group velocities using harmonic wavelet transform. NDT E Int. 2001;34(7):457–67.

    Article  Google Scholar 

  39. Lachaux J-P, Rodriguez E, Le van Quyen M, Lutz A, Martinerie J, Varela FJ. Studying single-trials of phase synchronous activity in the brain. Int J Bifurcat Chaos. 2000;10(10):2429–39.

    Article  Google Scholar 

  40. Tass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H-J. Detection of n: m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett. 1998;81(15):3291.

    Article  CAS  Google Scholar 

  41. Otnes RK, Enochson L. Digital time series analysis. New York: Wiley; 1972.

    Google Scholar 

  42. Silverman BW. Density estimation for statistics and data analysis, vol. 26. Boca Raton: CRC Press; 1986.

    Book  Google Scholar 

  43. Beirlant J, Dudewicz EJ, Györfi L, Van der Meulen EC. Nonparametric entropy estimation: an overview. Int J Math Stat Sci. 1997;6:17–40.

    Google Scholar 

  44. Steuer R, Kurths J, Daub CO, Weise J, Selbig J. The mutual information: detecting and evaluating dependencies between variables. Bioinformatics. 2002;18(Suppl 2):S231–40.

    Article  PubMed  Google Scholar 

  45. Qiu P, Gentles AJ, Plevritis SK. Fast calculation of pairwise mutual information for gene regulatory network reconstruction. Comput Methods Programs Biomed. 2009;94(2):177–80.

    Article  PubMed  Google Scholar 

  46. Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett. 2002;88(17):174102.

    Article  PubMed  Google Scholar 

  47. Liang Z, Wang Y, Ouyang G, Voss LJ, Sleigh JW, Li X. Permutation auto-mutual information of electroencephalogram in anesthesia. J Neural Eng. 2013;10(2):026004.

    Article  PubMed  Google Scholar 

  48. Quiroga RQ, Arnhold J, Grassberger P. Learning driver-response relationships from synchronization patterns. Phys Rev E. 2000;61(5):5142.

    Article  CAS  Google Scholar 

  49. Breakspear M, Terry J. Topographic organization of nonlinear interdependence in multichannel human EEG. Neuroimage. 2002;16(3):822–35.

    Article  CAS  PubMed  Google Scholar 

  50. Breakspear M, Terry J. Nonlinear interdependence in neural systems: motivation, theory, and relevance. Int J Neurosci. 2002;112(10):1263–84.

    Article  CAS  PubMed  Google Scholar 

  51. Quiroga RQ, Kraskov A, Kreuz T, Grassberger P. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E. 2002;65(4):041903.

    Article  Google Scholar 

  52. Arnhold J, Grassberger P, Lehnertz K, Elger C. A robust method for detecting interdependences: application to intracranially recorded EEG. Phys D. 1999;134(4):419–30.

    Article  Google Scholar 

  53. Eckmann J-P, Kamphorst SO, Ruelle D. Recurrence plots of dynamical systems. Europhys Lett. 1987;4(9):973–7.

    Article  Google Scholar 

  54. Zbilut JP, Giuliani A, Webber CL. Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys Lett A. 1998;246(1):122–8.

    Article  CAS  Google Scholar 

  55. Marwan N, Kurths J. Nonlinear analysis of bivariate data with cross recurrence plots. Phys Lett A. 2002;302(5):299–307.

    Article  CAS  Google Scholar 

  56. Webber CL Jr, Zbilut JP. Dynamical assessment of physiological systems and states using recurrence plot strategies. J Appl Physiol. 1994;76(2):965–73.

    PubMed  Google Scholar 

  57. Zbilut JP, Webber CL Jr. Embeddings and delays as derived from quantification of recurrence plots. Phys Lett A. 1992;171(3):199–203.

    Article  Google Scholar 

  58. Smith WD, Dutton RC, Smith NT. Measuring the performance of anesthetic depth indicators. Anesthesiology. 1996;84(1):38–51.

    Article  CAS  PubMed  Google Scholar 

  59. Shalbaf R, Behnam H, Sleigh J, Voss L. Using the Hilbert–Huang transform to measure the electroencephalographic effect of propofol. Physiol Meas. 2012;33(2):271.

    Article  CAS  PubMed  Google Scholar 

  60. Williams M, Sleigh J. Auditory recall and response to command during recovery from propofol anaesthesia. Anaesth Intensive Care. 1999;27(3):265.

    CAS  PubMed  Google Scholar 

  61. Li X, Li D, Liang Z, Voss L, Sleigh J. Analysis of depth of anesthesia with Hilbert–Huang spectral entropy. Clin Neurophysiol. 2008;119(11):2465–75.

    Article  PubMed  Google Scholar 

  62. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9–21.

    Article  PubMed  Google Scholar 

  63. Seo S. A review and comparison of methods for detecting outliers in univariate data sets. Pittsburgh: University of Pittsburgh; 2006.

    Google Scholar 

  64. Fatourechi M, Bashashati A, Ward RK, Birch GE. EMG and EOG artifacts in brain computer interface systems: a survey. Clin Neurophysiol. 2007;118(3):480–94.

    Article  PubMed  Google Scholar 

  65. Schlögl A. The electroencephalogram and the adaptive autoregressive model: theory and applications. Maastricht: Shaker; 2000.

    Google Scholar 

  66. Cimenser A, Purdon PL, Pierce ET, Walsh JL, Salazar-Gomez AF, Harrell PG, Tavares-Stoeckel C, Habeeb K, Brown EN. Tracking brain states under general anesthesia by using global coherence analysis. Proc Natl Acad Sci USA. 2011;108(21):8832–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sleigh JW, Donovan J. Comparison of bispectral index, 95% spectral edge frequency and approximate entropy of the EEG, with changes in heart rate variability during induction of general anaesthesia. Br J Anaesth. 1999;82(5):666–71.

    Article  CAS  PubMed  Google Scholar 

  68. Vakkuri A, Yli-Hankala A, Talja P, Mustola S, Tolvanen-Laakso H, Sampson T, Viertio-Oja H. Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand. 2004;48(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  69. Schrouff J, Perlbarg V, Boly M, Marrelec G, Boveroux P, Vanhaudenhuyse A, Bruno MA, Laureys S, Phillips C, Pelegrini-Issac M, Maquet P, Benali H. Brain functional integration decreases during propofol-induced loss of consciousness. Neuroimage. 2011;57(1):198–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (61304247, 61203210, 61273063), China Postdoctoral Science Foundation (2014M551051), Applied basic research project in Hebei province (12966120D) and Natural Science Foundation of Hebei Province of China (F2014203127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Li.

Ethics declarations

Conflict of interest

None declared.

Additional information

Zhenhu Liang and Ye Ren have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

PSPLV values of five frequency bands (δ, θ, α, β and γ1) of different epoch length T e in awake state (red), unconscious state (green) and recovery state (blue) (TIFF 157 kb)

Fig. S2

PSSE values of five frequency bands (δ, θ, α, β and γ1) of different epoch length T e in awake state (red), unconscious state (green) and recovery state (blue) (TIFF 168 kb)

Fig. S3

NI values of different parameters embedding dimension m, time lag τ and the number of nearest neighbors k in awake state (red), unconscious state (green) and recovery state (blue) (TIFF 104 kb)

Fig. S4

DET values of different parameters embedding dimension m, time lag τ and threshold of diagonal length l min in awake state (red), unconscious state (green) and recovery state (blue) (TIFF 99 kb)

Appendices

Appendix 1

In order to evaluate the synchronization changes in different anesthetic states efficiently, we discussed the parameter selections of PS, NI and DET. We calculated these synchronization indexes under different parameters of all subjects and chose three datasets from each synchronization index in awake, unconscious and recovery states which were according to the time points of each subjects. The values of synchronization indexes under different parameters were shown in Fig. S1-S4. All values were given by median (Q1, Q3).

1.1 PS

Fig. S1 and Fig. S2 showed the PSPLV (δ, θ, α, β and γ1) and PSSE (δ, θ, α, β and γ1) values at different epoch length T e in awake state (red), unconscious state (green) and recovery state (blue) of all subjects. It can be seen from Fig. S1 that the PSPLV values of all frequency bands decreased with increasing T e . The difference between awake and unconscious states of PSPLV (δ) were larger than PSPLV in other frequency bands, which was also could be seen from Fig. 4f. By contrast, PSSE had some fluctuation at different T e (Fig. S2). T e  = 20 was used in our study.

1.2 NI

Fig. S3A showed the NI values with time lag τ = 1, nearest neighbors k = 20 in different embedding dimension m in awake state (red), unconscious state (green) and recovery state (blue) of all subjects. The NI values with τ = 2, k = 20 in different m were shown in Fig. S3B. As can be seen from these two figures, NI increased monotonically with increasing m and the difference of NI values between awake, unconscious and recovery states became wider with increasing m. Therefore, m = 5 was selected in terms of calculation complexity. Figure S3C showed NI values with m = 5, k = 20 in different τ. The NI difference between awake and unconscious states became smaller with increasing τ, so we chose τ = 1. The NI values with m = 5, τ = 1 in different nearest neighbors k were shown in Fig. S3D and we selected k = 20.

1.3 DET

Figures S4A, S4B and S4C showed DET values with embedding dimension m = 3, m = 4 and m = 5 respectively in threshold of diagonal length l min  = 2 in different time lag τ in awake state (red), unconscious state (green) and recovery state (blue) of all subjects. m = 3, τ = 2 were selected because of the great DET difference between awake and unconscious states. DET values with m = 3, τ = 2 in different l min were shown in Fig. S4D and l min  = 2 was selected.

Appendix 2

We used the MATLAB programs lagged.m to compute COR, which can be downloaded from the Functional Connectivity Toolbox (https://sites.google.com/site/functionalconnectivitytoolbox/). The MATLAB programs of PSSE and PSCP (nbt_n_m_detection.m) can be downloaded from the Neurophysiological Biomarker Toolbox (https://www.nbtwiki.net/doku.php?id=tutorial:phase_locking_value#.VWm2zmgyGlB). The MATLAB programs of KerMI (FastPairMI.m) can be downloaded from http://pengqiu.gatech.edu/software/FastPairMI/index.htm. The MATLAB program of NI (synchro.m) can be downloaded from https://vis.caltech.edu/~rodri/software.htm. The MATLAB programs of PCMI, PSPLV, DET and WTC are available by contacting the corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Ren, Y., Yan, J. et al. A comparison of different synchronization measures in electroencephalogram during propofol anesthesia. J Clin Monit Comput 30, 451–466 (2016). https://doi.org/10.1007/s10877-015-9738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-015-9738-z

Keywords

Navigation