Skip to main content
Log in

Synthesis of Polyoxometalates-Dianhydrides Based Polyimides for Photocurrent Generation: A Combined Experimental and Computational Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

New 2,6-bis(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone (2Tris@PMDA) and its polymeric hybrids with Anderson polyoxometalates (DiTA@PMDA) and with Lindquist polyoxometalates (DiTL@PMDA) have been synthesized and thoroughly characterized. Using dr. Blade's approach, TiO2 based thin films of 2Tris@PMDA, DiTA@PMDA, and DiTL@PMDA have been designed to explore the adsorption study, optical activity, and photocurrent generation. The calculated electrical conductivity values for 2Tris@PMDA, DiTA@PMDA and DiTL@PMDA were 2.8 × 103 S/m−1.90 × 103 S/m, 2.7 × 103 S/m−1.7 × 103 S/m, and 2 × 103 S/m−1.65 ×103 S/m, respectively. Furthermore, computational analysis for 2Tris@PMDA, DiTA@PMDA, and DiTL@PMDA has been studied at B3LYP using 6-31 G (d, p) and LanL2DZ level of density functional theory. It indicates that the conjugation of 2Tris@PMDA with polyoxometalates makes them a suitable candidate for dye sensitized solar cell due to the charge transfer process in DiTA@PMDA and DiTL@PMDA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data generated and analysed during this study are included in this article.

References

  1. F. T. Kong, S. Y. Dai, and K. J. Wang (2007). Adv. Opto Electron. 2007, 2007.

    Google Scholar 

  2. Y. Bao, Z. Li, H. Wang, N. Li, Q. Pan, J. Li, J. Zhao, R. Yang, and F. Feng (2020). Langmuir 36 (26), 7365–7374.

    CAS  PubMed  Google Scholar 

  3. H. Fu, C. Qin, Y. Lu, Z. M. Zhang, Y. G. Li, Z. M. Su, W. L. Li, and E. B. Wang (2012). Angew. Chem. 32 (124), 8109–8113.

    Google Scholar 

  4. J. Gao, J. Yan, S. Beeg, D. L. Long, and L. Cronin (2012). Angew. Chem. Int. Ed. 51 (14), 3373–3376.

    CAS  Google Scholar 

  5. N. V. Izarova, M. T. Pope, and U. Kortz (2012). Angew. Chem. Int. Ed. 51 (38), 9492–9510.

    CAS  Google Scholar 

  6. J. L. Liu, F. S. Guo, Z. S. Meng, Y. Z. Zheng, J. D. Leng, M. L. Tong, L. Ungur, L. F. Chibotaru, K. J. Heroux, and D. N. Hendrickson (2011). Chem. Sci. 2 (7), 1268–1272.

    Google Scholar 

  7. S. Zhang, J. Zhao, P. Ma, J. Niu, and J. Wang (2012). Chem. Asian J. 7 (5), 966–974.

    CAS  PubMed  Google Scholar 

  8. X. P. Zheng, Y. Lu, H. Zhang, Z. M. Zhang, and E. B. Wang (2013). Inorg. Chem. Commun. 33, 29–32.

    Google Scholar 

  9. A. Hiskia, A. Mylonas, and E. Papaconstantinou (2001). Chem. Soc. Rev. 30 (1), 62–69.

    CAS  Google Scholar 

  10. D. Astruc, E. Boisselier, and C. Ornelas (2010). Chem. Rev. 110 (4), 1857–1959.

    CAS  PubMed  Google Scholar 

  11. N. Kawasaki, H. Wang, R. Nakanishi, S. Hamanaka, R. Kitaura, H. Shinohara, T. Yokoyama, H. Yoshikawa, and K. Awaga (2011). Angew. Chem. 123 (15), 3533–3536.

    Google Scholar 

  12. L. C. Almeida, A. D. Gonçalves, J. E. Benedetti, P. C. Miranda, L. C. Passoni, and A. F. Nogueira (2010). J. Mater. Sci. 45, 5054–5060.

    CAS  Google Scholar 

  13. N. J. Vickers (2017). Curr. Biol. 27 (14), R713–R715.

    CAS  PubMed  Google Scholar 

  14. B. Hasenknopf (2005). Front. Biosci. 10 (1), 275–287.

    CAS  PubMed  Google Scholar 

  15. H. Wu, H. K. Yang, and W. Wang (2016). New J. Chem. 40 (2), 886–897.

    CAS  Google Scholar 

  16. C. Fleming, D. L. Long, N. McMillan, J. Johnston, N. Bovet, V. Dhanak, N. Gadegaard, P. Kögerler, L. Cronin, and M. Kadodwala (2008). Nat. Nanotechnol. 3 (4), 229–233.

    CAS  Google Scholar 

  17. R. Sun, J. P. Su, L. H. Gao, and K. Z. Wang (2020). Sol. Energy Mater. Sol. 209.

    CAS  Google Scholar 

  18. S. M. Wang, L. Liu, W. L. Chen, E. B. Wang, and Z. M. Su (2013). Dalton Trans. 42 (8), 2691–2695.

    CAS  PubMed  Google Scholar 

  19. J. S. Li, X. J. Sang, W. L. Chen, L. C. Zhang, Z. M. Su, C. Qin, and E. B. Wang (2013). Inorg. Chem. Commun. 38, 78–82.

    Google Scholar 

  20. W. Liu, Y. Wang, K. Qi, F. Wen, and J. Wang (2022). Langmuir 38 (16), 4839–4847.

    CAS  PubMed  Google Scholar 

  21. L. Chen, W. L. Chen, X. L. Wang, Y. G. Li, Z. M. Su, and E. B. Wang (2019). Chem. Soc. R 48 (1), 260–284.

    CAS  Google Scholar 

  22. S. K. Parayil, Y. M. Lee, and M. Yoon (2009). Electrochem. Commun. 11 (6), 1211–1216.

    CAS  Google Scholar 

  23. H. Y. Ye, J. M. Qi, R. Sun, L. H. Gao, and K. Z. Wang (2017). Electrochim. Acta. 256, 291–298.

    CAS  Google Scholar 

  24. F. Odobel, M. Séverac, Y. Pellegrin, E. Blart, C. Fosse, C. Cannizzo, C. R. Mayer, K. J. Elliott, and A. Harriman (2009). Chem. Eur. J. 15 (13), 3130–3138.

    CAS  PubMed  Google Scholar 

  25. E. Benazzi, J. Karlsson, Y. B. M’Barek, P. Chabera, S. Blanchard, S. Alves, A. Proust, T. Pullerits, G. Izzet, and E. A. Gibson (2021). Inorg. Chem. Front. 8 (6), 1610–1618.

    CAS  Google Scholar 

  26. Y. Gao, W. Guan, L. Yan, and Y. Xu (2019). Phys. Chem. Chem. Phys. 21 (7), 3822–3831.

    CAS  PubMed  Google Scholar 

  27. H. J. Yen and G.-S. Liou (2016). Poly. J. 48 (2), 117–138.

    CAS  Google Scholar 

  28. K. Iida, T. Nohara, S. Nakamura, and G. Sawa (1989). J. J. Appl. Phys. 28 (8R), 1390.

    CAS  Google Scholar 

  29. C. Tan (2015). J. Am Che. Soc. 137 (4), 1565–157136.

    CAS  Google Scholar 

  30. E. Aleksandrova (2002). Opt. Spectrosc. 93, 118–125.

    CAS  Google Scholar 

  31. S. C. Freilich (1987). Macromolecules 20 (5), 973–978.

    CAS  Google Scholar 

  32. C. B. Gorman and R. H. Grubbs (1991). Conjugated Polym. 8, 1–48.

    Google Scholar 

  33. V. W. Day, W. G. Klemperer, and D. J. Maltbie (1987). J. Am. Chem. Soc. 109 (10), 2991–3002.

    CAS  Google Scholar 

  34. R. Rahimi, R. Fatemeh and R. Mahboubeh (2014). In Proceedings of the18th International Electronic Conference on Synthetic Organic Chemistry; Multidisciplinary Digital Publishing Institute: Basel, pp/ 3-4.

  35. C. Allain, D. Schaming, N. Karakostas, M. Erard, J. P. Gisselbrecht, S. Sorgues, I. Lampre, L. Ruhlmann, and B. Hasenknopf (2013). Dalton Trans. 42 (8), 2745–2754.

    CAS  PubMed  Google Scholar 

  36. Y. Shibano, T. Umeyama, Y. Matano, and H. Imahori (2007). Org. Lett. 9, 1971–1974.

    CAS  PubMed  Google Scholar 

  37. H. M. Asif, A. Iqbal, Y. Zhou, L. Zhang, T. Wang, M. I. U. Farooqi, and R. Sun (2021). Dye. Pigment. 184.

    CAS  Google Scholar 

  38. R. G. Finke, B. Rapko, R. J. Saxton, and P. J. Domaille (1986). J. Am. Chem. Soc. 108 (11), 2947–2960.

    CAS  Google Scholar 

  39. F. H. Ashfaq, K. Ahmad, M. Tariq, H. M. Asif, M. M. Ahmed, S. M. El-Bahy, M. M. Ibrahim, and I. H. El Azab (2022). Polyhedron 228.

    Google Scholar 

  40. Q. U. Khan, N. Jia, G. Tian, S. Qi, and D. Wu (2017). J. Phys. Chem. C. 121 (17), 9153–9161.

    CAS  Google Scholar 

  41. U. Saleem, M. Tariq, M. Nadeem, S. Hussain, M. A. Khan, H. M. Asif, A. Hussain, G. A. Mersal, and I. H. El Azab (2022). Optical Mater. 134.

    CAS  Google Scholar 

  42. Y. Kim, W. H. Doh, J. Kim, and J. Y. Park (2018). Langmuir 34 (21), 6003–6009.

    CAS  PubMed  Google Scholar 

  43. P. P. Zhang, J. Q. Lin, and W. L. Yang (2013). Trans Tech Publ. 821–822, 906–908.

    Google Scholar 

  44. K. Maleckaitė, D. Narkevičius, R. Žilėnaitė, J. D. Vaitkūnienė, S. Toliautas, S. Tumkevičius, and A. Vyšniauskas (2022). Molecules 27 (1), 23.

    Google Scholar 

  45. I. Ahmed, R. Farha, Z. Huo, C. Allain, X. Wang, H. Xu, M. Goldmann, B. Hasenknopf, and L. Ruhlmann (2013). Electrochim. Acta. 110, 726–734.

    CAS  Google Scholar 

  46. K. Suzuki (2009). Phy. Chem. Chem. Phys. 11 (42), 9850–9860.

    CAS  Google Scholar 

  47. S. Cetindere (2013). Chem. Eur. J. 27 (68), 17181–17187.

    Google Scholar 

  48. C. Würth, M. Grabolle, J. Pauli, M. Spieles, and U. Resch-Genger (2013). Nat. Protocol. 8 (8), 535–1550.

    Google Scholar 

  49. B. Xu, M. Lu, J. Kang, D. Wang, J. Brown, and Z. Peng (2005). Chem. Material. 17 (11), 2841–2851.

    CAS  Google Scholar 

  50. K. Takizawa, S. Asai, and S. Ando (2014). Polym. J. 46 (4), 201–206.

    CAS  Google Scholar 

  51. D. Zang, Y. Huang, Q. Li, Y. Tang, and Y. Wei (2019). Appl. Catal. B 249, 163–171.

    CAS  Google Scholar 

  52. D. E. S. Marcano, M. A. Moussawi, A. V. Anyushin, S. Lentink, L. Van Meervelt, I. Ivanović Burmazović, and T. N. P. Vogt (2022). Chem. Sci. 13 (10), 2891–2899.

    Google Scholar 

  53. S. H. Hsiao and T. L. Huang (2004). J. Polym. Res. 11, 9–21.

    CAS  Google Scholar 

  54. S. C. Singh, Y. Peng, J. Rutledge, and C. Guo (2019). ACS Appl. Electron. Mater. 1 (7), 1169–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Mishra, R. Srivastava, S. Prakash, R. Yadav, and A. Panday (2010). Opto-electron. Rev. 18 (4), 467–473.

    CAS  Google Scholar 

  56. X. Zheng, L. Guo, H. Liang, P. Wang, S. Wang, T. Wang, X. Rong, B. Sheng, X. Yang, and F. Xu (2016). Opt. Mater. Exp. 6 (3), 815–822.

    CAS  Google Scholar 

  57. I. Azcarate, Z. Huo, R. Farha, M. Goldmann, H. Xu, B. Hasenknopf, E. Lacote, and L. Ruhlmann (2015). Chem. Eur J. 21 (22), 8271–8280.

    CAS  PubMed  Google Scholar 

  58. R. Li, Q. Yue, and Z. Wei (2013). J. Mater. Chem. C1, 5866–5871.

    Google Scholar 

  59. K. Ou, S. Wang, L. Bai, Y. Wang, K. Zhang, and L. Yi (2019). Thin Solid Films 669, 247–252.

    CAS  Google Scholar 

  60. A. A. Hakeem, H. Ali, M. A. El-Raheem, and M. Hasaneen (2021). Optik 225, 165390.

    Google Scholar 

  61. M. Hasaneen, Y. Taya, H. Ali, and M. R. Ahmed (2020). Appl. Phys. A. 126, 1–12.

    Google Scholar 

  62. M. Hasaneen, Z. Alrowaili, and W. Mohamed (2020). Mater. Res. Exp. 7, 16422.

    CAS  Google Scholar 

  63. F. S. Ahmed, N. Y. Ahmed, R. S. Ali, N. F. Habubi, K. H. Abass, and S. S. Chiad (2020). NeuroQuantology 18, 56.

    Google Scholar 

  64. M. Shkir, V. Ganesh, S. AlFaify, I. Yahia, and H. Zahran (2018). J. Mater. Sci. Mater. Electron. 29, 6446–6457.

    CAS  Google Scholar 

  65. J. Chen, Y. Xiong, M. Duan, X. Li, J. Li, S. Fang, S. Qin, and R. Zhang (2020). Langmuir 36, 520–533.

    CAS  PubMed  Google Scholar 

  66. S. Rani, M. Tariq, M. H. Bhatti, S. A. Abdelmohsen, M. M. Alanazi, M. A. Khan, H. M. Asif, M. Nadeem, and R. Khan (2023). Optical Mater. 138.

    CAS  Google Scholar 

  67. A. F. Phuekphong, K. J. Imwiset, and M. Ogawa (2020). Langmuir 36, 9025–9034.

    CAS  PubMed  Google Scholar 

  68. J. Imanipoor and M. Mohammadi (2022). Langmuir 38, 5900–5914.

    CAS  PubMed  Google Scholar 

  69. S. Mallakpour and M. Lormahdiabadi (2022). Langmuir 38, 4065–4076.

    CAS  PubMed  Google Scholar 

  70. J. Huang and Z. Yan (2018). Langmuir 34, 1890–1898.

    CAS  PubMed  Google Scholar 

  71. R. Ragadhita, A. B. D. Nandiyanto, W. C. Nugraha, and A. Mudzakir (2019). J. Eng. Sci. Technol. 14, 2052–2062.

    Google Scholar 

  72. F. Erdemir, D. B. Celepci, A. Aktaş, and Y. Gök (2020). J. M. Struct. 1204.

    CAS  Google Scholar 

  73. H. Wu, T. Ma, C. Wu, L. Yan, and Z. Su (2017). Dye. Pigment. 142, 379–386.

    CAS  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP.2/574/44.

Author information

Authors and Affiliations

Authors

Contributions

The first author contributed to this manuscript's experimental work and writing-original draft. All the authors contributed to this work by investigation, visualization, review, and editing. Sobia Arbab: Conceptualization, Methodology, Writing—original draft, preparation, Writing—review & editing, Visualization. Ajaz Hussain: Characterizations, Visualization. Khurshid Ayyub: Characterizations, Visualization. Muhammad Ammar: Writing—review & editing, Visualization. Hafiz Muhammad Asif: Conceptualization, Supervision, Writing—original draft, preparation, Writing—review & editing, Funding acquisition. Muhammad Ali Khan: Writing—review & editing. Muhammad Nadeem: Characterization, software, validation. Mohammed A. Assiri: Revision and funding acquisition Ibrahim A. Shaabanb: Revision and funding acquisition

Corresponding author

Correspondence to Hafiz Muhammad Asif.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4204 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbab, S., Hussain, A., Assiri, M.A. et al. Synthesis of Polyoxometalates-Dianhydrides Based Polyimides for Photocurrent Generation: A Combined Experimental and Computational Study. J Clust Sci 35, 1359–1374 (2024). https://doi.org/10.1007/s10876-024-02587-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-024-02587-z

Keywords

Navigation