Skip to main content
Log in

Enhanced Photocatalytic Activity of Acerola Peel Extract-Coated TiO2 Against Pseudomonas aeruginosa

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

TiO2 is a widely studied semiconductor with high photocatalytic activity, with various applications across many sectors. TiO2 oxidative reactions are only driven under ultraviolet radiation, and expanding the absorption properties towards to the visible range could enhance the photocatalytic applications, reducing its UV light source reliance. In this context, this study reports the titanium dioxide nanoparticles (TiO2-NPs) coating with Malpighia emarginata (acerola) extract to shift the band gap and be applied against Pseudomonas aeruginosa by photocatalysis. The acerola peel hydroethanolic extract (AcE) was obtained by ultrasound, evaluating its total flavonoid and phenolic compound contents, scavenging free radical ability, and antimicrobial capacity. AcE coating of TiO2-NPs was obtained under magnetic stirring (AcE-TiO2-ms) and ultrasound bath (AcE-TiO2-us) methods. Nanoparticles (NPs) physicochemical properties were characterized by UV-visible DRS spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopic (TEM), and atomic force microscopy (AFM) techniques. The NPs antimicrobial activity was assessed through photocatalysis under dark, visible, and UV light conditions for 30–180 min. The AcE exhibited high phenolic compound content, antioxidant activity, and antimicrobial potential against P. aeruginosa. The AcE coating TiO2-NPs resulted in an average particle size of 20–35 nm, confirmed by FTIR and TEM analyses. Notably, an enhancement in the photocatalytic performance of AcE-coated TiO2 was observed under the visible light spectrum, particularly in the AcE-TiO2-ms case. This nanoparticle exhibited high antimicrobial activity under visible irradiation at 120 and 180 min, confirming its catalytic performance under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All the data obtained or analyzed during this study are included in this published article.

References

  1. D. Trivedi, M. Chavali, S. Vohra, P. Salunkhe, S. Tripathi, in Nanobiotechnology for the Livestock Industry, ed. By R.P. Singh, C.O. Adetunji, Ra.L. Singh, J. Singh, P.R. Solanki, K.R.B. Singh (Elsevier, Amsterdam, 2023), p. 369.

    Chapter  Google Scholar 

  2. S. Cheng, Q. Wang, M. Qi, W. Sun, K. Wang, W Li, et al., Mater Des (2023) https://doi.org/10.1016/j.matdes.2023.111982

    Article  Google Scholar 

  3. K. ur Rehman, A.U. Khan, K. Tahir, S. Nazir, K. Albalawi, H.M.A. Hassan, et al., J Mol Liq (2022) https://doi.org/10.1016/j.molliq.2022.119453

    Article  Google Scholar 

  4. H.M. Alkhalidi, U. Zaman, D. Khan, K. ur Rehman, K.I. Omar, M. Alissa, et al., J Mol Liq (2023) https://doi.org/10.1016/j.molliq.2023.123469

    Article  Google Scholar 

  5. R. Gul, S. Naqib, E.A.M. Saleh, S.U. Khan, M. Ibrahim, S. Tabassum, et al., Inor Chem Commun (2023) https://doi.org/10.1016/j.inoche.2023.111109

    Article  Google Scholar 

  6. H.A. Bukhary, U. Zaman, K. ur Rehman, M. Alissa, W.Y. Rizg, D. Khan, et al., Int J Biol Macromol (2023) https://doi.org/10.1016/j.ijbiomac.2023.124809

    Article  PubMed  Google Scholar 

  7. K. ur Rehman, S.U. Khan, K. Tahir, U. Zaman, D. Khan, S. Nazir, et al., J Environ Chem Eng (2022) https://doi.org/10.1016/j.jece.2022.107623

    Article  Google Scholar 

  8. J. Dolai, K. Mandal, N.R. Jana, Appl Nano Mater (2021) https://doi.org/10.1021/acsanm.1c00987

    Article  Google Scholar 

  9. R. Saini, P. Kumar, Inorg Chem Commun (2023) https://doi.org/10.1016/j.inoche.2023.111221

    Article  Google Scholar 

  10. H. Hussain, G. Tocci, T. Woolcot, X. Torrelles, C.L. Pang, D.S. Humphrey, et al., Nat Mater (2017) https://doi.org/10.1038/nmat4793

    Article  PubMed  Google Scholar 

  11. H.A. Rehehman, I.B. Ditta, S. Varghese, A. Steele, Appl Microbiol Biotechnol (2011) https://doi.org/10.1007/s00253-011-3213-7

    Article  Google Scholar 

  12. M. Aravind, M. Amalanathan, M.S.M. Mary, SN Appl Sci 409 https://doi.org/10.1007/s42452-021-04281-5

  13. N. Bazzanella, O.P. Bajpai, M. Fendrich, G. Guella, A. Miotello, M. Orlandi, (2023) MRS Commun https://doi.org/10.1557/s43579-023-00440-4

    Article  Google Scholar 

  14. J. Roy, J Ind Eng Chem (2022) https://doi.org/10.1016/j.jiec.2021.10.024

    Article  Google Scholar 

  15. M. Santiago, R. Rivera, A. Torres, J Mat Sci Chem Eng (2023) https://doi.org/10.4236/msce.2023.112003

    Article  Google Scholar 

  16. L.K Ruddaraju. S.V.N. Pammi, G.S. Guntuku, V.S. Padavala, V.R.M. Kolapalli, Asian J Pharm Sci (2020) https://doi.org/10.1016/j.ajps.2019.03.002

    Article  PubMed  Google Scholar 

  17. P.S. Jassal, D. Kaur, R. Prasad, J. Singh. J Agric Food Res (2022) https://doi.org/10.1016/j.jafr.2022.100361

    Article  Google Scholar 

  18. D. Rapachi, C.R. de M. Peixoto, F.A. Pavan, M.A. Gelesky, J Clus Sci (2023) https://doi.org/10.1007/s10876-023-02426-7

    Article  Google Scholar 

  19. M.E. Martínez-Barbosa, M.D. Figueroa-Pizano, in Advances in Bionanocomposites, ed. By B. Sharma, S. Thomas, P.K. Bajpai, K. Ghosal, S. Shekhar (Elsevier, Amsterdam, 2024), p. 17–54.

    Chapter  Google Scholar 

  20. P.S. Jassal, D. Kaur, R. Prasad, J. Singh, J Agric Food Res (2021) https://doi.org/10.1016/j.jafr.2022.100361

    Article  Google Scholar 

  21. K. ur Rehman, U. Zaman, K. Tahir, D. Khan, N.S. Khattak, S.U. Khan, et al., Inor Chem Commun (2022) https://doi.org/10.1016/j.inoche.2021.109179

    Article  Google Scholar 

  22. S.H. Gebre, J Clus Sci (2022) https://doi.org/10.1007/s10876-022-02276-9

  23. E.R. Silva-Osuna, A.R. Vilchis-Nestor, R.C. Villarreal-Sanchez, A. Castro-Beltran, P.A. Luque, Opt Mater (2022) https://doi.org/10.1016/j.optmat.2022.112039

    Article  Google Scholar 

  24. Y. Jin, B. Li, K. Saravanakumar, X. Hu, M.-H. Wang, J Clus Sci (2022) https://doi.org/10.1007/s10876-021-02024-5

    Article  Google Scholar 

  25. C.F.H. Moura, L. de S. Oliveira, K.O. de Souza, L.G. da Franca, L.B. Ribeiro, P.A. de Souza, et al., in Exotic Fruits, ed. By S. Rodrigues, E. de Oliveira Silva, E.S. de Brito (Academic Press, Cambridge, 2018), p. 7

  26. IBGE (Brazilian Institute of Geography and Statistics, 2017), Acerola production. https://www.ibge.gov.br/explica/producao-agropecuaria/acerola/br. Accessed 4 July 2023

  27. T. Belwal, H.P. Devkota, H.A. Hassan, S. Ahluwalia, M.F. Ramadan, A. Mocan et al., et al., Trends Food Sci Technol (2018) https://doi.org/10.1016/j.tifs.2018.01.014

    Article  Google Scholar 

  28. A. Prakash, R. Baskaran, J Food Sci Technol (2018) https://doi.org/10.1007/s13197-018-3309-5

    Article  PubMed  PubMed Central  Google Scholar 

  29. R.A.S. Miskinis, L.Á. do Nascimento, R. Colussi, Food Chem (2023) https://doi.org/10.1016/j.foodchem.2022.134613

    Article  Google Scholar 

  30. D.-P. Xu, Y. Li, X. Meng, T. Zhou, Y. Zhou, J. Zheng, et al., Int J Mol Sci (2017) https://doi.org/10.3390/ijms18010096

    Article  PubMed  PubMed Central  Google Scholar 

  31. A.D.A. Uchôa, W.F. Oliveira, A.P.C. Pereira, A.G. Silva, B.M.P.C. Cordeiro, C.B. Malafaia, et al., Am J Plant Sci (2015) https://doi.org/10.4236/ajps.2015.619298

    Article  Google Scholar 

  32. B. Sultana, F. Anwar, M. Ashraf, Molecules (2009) https://doi.org/10.3390/molecules14062167.

  33. W. Brand-Williams, M.E. Cuvelier, C. Berset, Food Sci Technol (1995) https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  34. K. Velayutham, A.A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu, C. Jayaseelan, et al., Parasitol Res (2012) https://doi.org/10.1007/s00436-011-2676-x

    Article  PubMed  Google Scholar 

  35. Clinical and Laboratory Standards Institute: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. CLSI M07-A11:1–13, 2012

  36. H.M. Yadav, S.V. Otari, V.B. Koli, S.S. Mali, C.K. Hong, S.H. Pawar, et al., J Photochem Photobiol A (2014) https://doi.org/10.1016/j.jphotochem.2014.02.006

    Article  Google Scholar 

  37. H.M. Yadav, T.V. Kolekar, S.H. Pawar, J.-S. Kim, Mater Sci: Mater Med (2016) https://doi.org/10.1007/s10856-016-5675-8

    Article  Google Scholar 

  38. P. Poletto, G. Álvarez-Rivera, G.D. López, O.M.A. Borges, J.A. Mendiola, E. Ibáñez, et al., Food Sci Technol (2021) https://doi.org/10.1016/j.lwt.2021.111654

    Article  Google Scholar 

  39. T.R. Marques, P.H.S. Cesar, M.A. Braga, S Marcussi, A.D. Corrêa, J Food Sci (2018) https://doi.org/10.1111/1750-3841.14330

    Article  PubMed  Google Scholar 

  40. N.C. Silva, O.B.G. Assis, A.G.O. Sartori, S.M. Alencar, M. Martelli-Tosi, Food Res Int (2022) https://doi.org/10.1016/j.foodres.2022.111855

    Article  PubMed  Google Scholar 

  41. J.S.D. Carmo, L.S.Q. Nazareno, M.D.S.M. Rufino, Food Sci Technol (2018) https://doi.org/10.1590/fst.18117

    Article  Google Scholar 

  42. R.J.M.C. Nogueira, J.A.P.V. Moraes, H.A. Burity, J.F. Silva Junior, Pesq Agropec Bras (2002) https://doi.org/10.1590/S0100-204X2002000400006

    Article  Google Scholar 

  43. M.M. Qaderi, A.B. Martel, C.A. Strugnell, Plants (2023) https://doi.org/10.3390/plants12030447

  44. T. Manso, M. Lores, M., T. de Miguel, Antibiotics (2022) https://doi.org/10.3390/antibiotics11010046

  45. C.B. Aware, D.N. Patil, S.S. Suryawanshi, P.R. Mali, M.R. Rane, R.G. Gurav, et al., S Afr J Bot (2022) https://doi.org/10.1016/j.sajb.2022.05.028

    Article  Google Scholar 

  46. D. Bešlo N. Golubić, V. Rastija, Dejan Agić, M. Karnaš, D. Šubarić, et al., Antioxidants (2023) https://doi.org/10.3390/antiox12061141

  47. S. Kumar, A.K. Pandey, Sci World J (2013) https://doi.org/10.1155/2013/162750

  48. M. Ilyas, A. Waris, A. Ul. Khan, D. Zamel, L. Yar, A. Baset, A et al., Inorg Chem Commun (2021) https://doi.org/10.1016/j.inoche.2021.108968

    Article  Google Scholar 

  49. P. Makuła, M. Pacia, W. Macyk. J. Phys. Chem. Lett (2018) https://doi.org/10.1021/acs.jpclett.8b02892

    Article  PubMed  Google Scholar 

  50. S.N. Kharat, V.D. Mendhulkar, Mater Sci Eng C (2016) https://doi.org/10.1016/j.msec.2016.02.024

    Article  Google Scholar 

  51. J. Coates, in Encyclopedia of Analytical Chemistry, ed. By R.A. Meyers (John Wiley & Sons, New Jersey, 2006) p. 1–23

    Google Scholar 

  52. L. Hssaini, R Razouk, Y. Bouslihim, Front Plant Sci (2022) https://doi.org/10.3389/fpls.2022.782159

    Article  PubMed  PubMed Central  Google Scholar 

  53. I.C. Ferreira, V.P. Silva, J.C. Vilvert, F.F. Souza, S.T. Freitas, M. S. Lima, J Food Biochem (2021) https://doi.org/10.1111/jfbc.13829

    Article  Google Scholar 

  54. N.E. Sunny, S.S. Mathew, N. Chandel, P. Saravanan, R. Rajeshkannan, M. Rajasimman, et al., Chemosphere (2022) https://doi.org/10.1016/j.chemosphere.2022.134612

  55. G. Rajakumar, A.A. Rahuman, B. Priyamvada, V.G. Khanna, D.K. Kumar, P.J. Sujin, Mater Lett (2012) https://doi.org/10.1016/j.matlet.2011.10.038

    Article  Google Scholar 

  56. A.A. Mosquera, J.M. Albella, V. Navarro, D. Bhattacharyya, J.L. Endrino, Sci Rep (2016) https://doi.org/10.1038/srep32171

    Article  PubMed  PubMed Central  Google Scholar 

  57. T.J.I Edison, M.G. Sethuraman, Process Biochem (2012) https://doi.org/10.1016/j.procbio.2012.04.025

    Article  Google Scholar 

  58. M.T. Yassin, A. A.-F. Mostafa, A.A. Al-Askar, F.O. Al-Otibi, Crystals (2022) https://doi.org/10.3390/cryst12050603

  59. N. Aligiannis, E. Kalpoutzakis, S. Mitaku, I.B. Chinou, J Agric Food Chem (2001) https://doi.org/10.1021/jf001494m

    Article  PubMed  Google Scholar 

  60. D. Webster, P. Taschereau, R.J. Belland, C. Sand, R.P. Rennie, J Ethnopharmacol https://doi.org/10.1016/j.jep.2007.09.014

  61. J.-Y. Bae1, Y.-H. Seo1, S.-W. Oh, Food Sci Biotechnol (2022) https://doi.org/10.1007/s10068-022-01058-3

  62. N.F. Shamsudin, Q.U. Ahmed, S. Mahmood, S.A.A. Shah, A. Khatib, S. Mukhtar, et al., Molecules (2022) https://doi.org/10.3390/molecules27041149

  63. R. Puupponen-Pimiä, L. Nohynek, H.-L. Alakomi, K.-M.O. ksman-Caldentey, Appl Microbiol Biotechnol (2005) https://doi.org/10.1007/s00253-004-1817-x

    Article  PubMed  Google Scholar 

  64. C.S. Rempe, K.P. Burris, S.C. Lenaghan, C.N, Stewart Jr., Front Microbiol (2017) https://doi.org/10.3389/fmicb.2017.00422

    Article  PubMed  PubMed Central  Google Scholar 

  65. N. Vaou, E. Stavropoulou, C. Voidarou, Z. Tsakris, G. Rozos, C. Tsigalou, et al., Antibiotics (2022) https://doi.org/10.3390/antibiotics11081014

  66. N. Motohashi, H. Wakabayashi, T. Kurihara, H. Fukushima, T. Yamada, M. Kawase, et al., Phytother Res 18 (2004) https://doi.org/10.1002/ptr.1426

  67. L. Delva, R. Goodrich-Schneider, Food Sci Technol (2013) https://doi.org/10.1111/ijfs.12061

    Article  Google Scholar 

  68. V. Etacheri, G. Michlits, M.K. Seery, S.J. Hinder, S.C. Pillai, ACS Appl Mater Interfaces (2013) https://doi.org/10.1021/am302676a

    Article  PubMed  Google Scholar 

  69. T.L de Jager, A.E Cockrell, S.S. Du Plessis, Adv Exp Med Biol (2017) https://doi.org/10.1007/978-3-319-56017-5_2

    Article  PubMed  Google Scholar 

  70. M. Srinivash, R. Krishnamoorthi, P.U. Mahalingam, B. Malaikozhundan, S. Bharathakumar, K. Gurushankar, et al., Inorg Chem Commun (2023) https://doi.org/10.1016/j.inoche.2023.110682

    Article  PubMed  PubMed Central  Google Scholar 

  71. K. Ravichandran, S. Suvathi, M. Ayyanar, P. Kavitha, P.K. Praseetha, J Photochem Photobiol A (2024) https://doi.org/10.1016/j.jphotochem.2023.115169

  72. V.H. Rathi, A.R. Jeice, K. Jayakumar, Appl Surf Sci Adv (2023) https://doi.org/10.1016/j.apsadv.2023.100476

    Article  Google Scholar 

  73. F. Achouri, M. Ben said, M.A. Wahab, L. Bousselmi, S. Corbel, R. Schneider, et al., Environ Technol (2021) https://doi.org/10.1080/09593330.2020.1751729

    Article  PubMed  Google Scholar 

  74. T. Ali, A Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Mater Chem Phys (2018) https://doi.org/10.1016/j.matchemphys.2018.03.052

    Article  Google Scholar 

  75. K. Vignesh, R. Priyanka, R. Hariharan, M. Rajarajan, A. Suganthi, J Ind Eng Chem (2014) https://doi.org/10.1016/j.jiec.2013.04.038

    Article  Google Scholar 

  76. R.I.S. Oliveira, I.N. de Oliveira, J.F. de Conto, A.M. de Souza, S.R.B. de Medeiros, S.M. Egues, et al., Heliyon (2023) https://doi.org/10.1016/j.heliyon.2023.e22108

Download references

Acknowledgements

The authors thank the funding National Council for Scientific and Technological Development (CNPq) (Grant: 01/2016-PIBIC, 305462/2021-0 DT2 and, 313662/2019-3 DT2), Coordination for the Improvement of Higher Education Personnel (CAPES) (Grant:001) and Foundation for Research and Technological Innovation Support of the State of Sergipe (FAPITEC/SE) for financial support and student fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Maria L. Hernández-Macedo, Jorge A. López, and Silvia M. Egues: Writing – original draft, review & editing, Visualization, Conceptualization, Investigation, Formal analysis, Resources, Methodology, Supervision, Data curation, Funding acquisition, Project administration. José R. Oliveira Silva, Caio M. Almeida and Juliana F. de Conto: Validation, Investigation, Methodology, Data curation.

Corresponding author

Correspondence to Maria L. Hernández-Macedo.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, J.R.O., Almeida, C.M., de Conto, J.F. et al. Enhanced Photocatalytic Activity of Acerola Peel Extract-Coated TiO2 Against Pseudomonas aeruginosa. J Clust Sci 35, 1127–1140 (2024). https://doi.org/10.1007/s10876-023-02537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02537-1

Keywords

Navigation