Skip to main content
Log in

Investigation of Visible Light Driven Photocatalytic Activity of Mn Doped CuFe2O4 Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Microwave combustion method (MCM) was utilized to synthesize nanoparticles of Mn- Mn doped CuFe2O4 (Mn: CuFe2O4). The crystallite size ranged from 19 to 22 nm, determined from the XRD studies of Mn: CuFe2O4 nanoparticles employing the Debye Scherrer formula. X-ray photoelectron spectroscopy (XPS) analysis was employed to determine the chemical elements and their respective oxidation states. The agglomerative nanoparticles exhibited a spherical shape as observed through HR-SEM. The elemental composition of the nanoparticles was determined through EDX analysis, which indicated the presence of Mn, Cu, Fe, and O. The sample completely analyzed by TEM SAED, EPR and BET. The samples produced were analyzed using diffuse reflectance spectroscopy, which revealed energy gap values ranging from 2.10 to 2.30 eV. The observed photoluminescence emissions in the visible range of 415–450 nm in all samples suggest the presence of oxygen vacancies. Magnetic properties viz. remanent magnetization, coercivity, and saturation magnetization deduced from the hysteresis curves (B-H). Further nanoparticles that were synthesized were subjected to photocatalytic degradation (PCD) of rhodamine B under visible light. The spinel system of CuFe2O4 exhibits reactivity towards H2O2, leading to a process akin to the Fenton reaction. The chemical components of RhB dye confirmed by Total ion chromatography. The photocatalytic performance of the CMF5 sample is superior when compared to the other samples. The possible mechanisms amenable to the PCD method are elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R. Kant (2012). Textile dyeing industry an environmental hazard. Nat. Sci. 04, 22–26.

    CAS  Google Scholar 

  2. P. Nuengmatcha, S. Chanthaia, R. Mahachaia, and W. C. Oh (2016). Visible light-driven photocatalytic degradation of rhodamine B and industrial dyes (texbrite BAC-L and texbrite NFW-L) by ZnO-graphene-TiO2 composite. J. Environ. Chem. Eng. 4, 2170–2177.

    Article  CAS  Google Scholar 

  3. N. Barka, S. Qourzal, A. Assabbane, A. Nounahb, and Y. A. Ichou (2008). Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper. J. Photochem. Photobio. A: Chem. 195, 346–351.

    Article  CAS  Google Scholar 

  4. Y. Wang, N. Lin, Y. Gong, R. Wang, and X. Zhang (2021). Cu-Fe embedded cross-linked 3D hydrogel for enhanced reductive removal of Cr(VI): Characterization, performance and mechanisms. Chemosphere 280, 130–663.

    Article  Google Scholar 

  5. Y. Wang, Y. Gong, N. Lin, L. Yu, B. Du, and X. Zhang (2022). Enhanced removal of Cr(VI) from aqueous solution by stabilized nanoscale zero-valent iron and copper bimetal intercalated montmorillonite. J. Colloid Interface Sci. 606, 941–952.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Y. Wang, R. Wang, N. Lin, Y. Wang, and X. Zhang (2021). Highly efficient microwave-assisted Fenton degradation bisphenol A using iron oxide modified double perovskite intercalated montmorillonite composite nanomaterial as catalyst. J. Colloid Interface Sci. 594, 446–459.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Y. Wang, L. Yu, R. Wang, Y. Wang, and X. Zhang (2020). Reactivity of carbon spheres templated Ce/LaCo0.5Cu0.5O3 in the microwave induced H2O2 catalytic degradation of salicylic acid: Characterization, kinetic and mechanism studies. J. Colloid Interface Sci. 574, 74–86.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Y. Yang, W. Ji, X. Li, Z. Zheng, F. Bi, M. Yang, J. Xu, and X. Zhang (2021). Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO n-n heterojunction microspheres. Chem. Eng. J. 420, 129934.

    Article  CAS  Google Scholar 

  9. K. Yue, X. Zhang, S. Jiang, J. Chen, Y. Yang, F. Bi, and Y. Wang (2021). Recent advances in strategies to modify MIL-125 (Ti) and its environmental applications. J. Mol. Liq. 335, 116108.

    Article  CAS  Google Scholar 

  10. N. Liu, J. Wang, M. Tian, J. Lei, J. Wang, W. Shi, X. Zhang, and L. Tang (2021). Boron nitride nanosheets decorated MIL-53(Fe) for efficient synergistic ibuprofen photocatalytic degradation by persulfate activation. J. Colloid Interface Sci. 603, 270–281.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R. Ladchumananandasivam, U. U. Gomes, M. Jayachandran, and M. Maaza (2016). Solution processing of CuSe quantum dots: photocatalytic activity under RhB for UV and visible-light solar irradiation. Mater. Sci. Eng. B. 210, 1–9.

    Article  CAS  Google Scholar 

  12. Z. Zhang, S. Zhai, M. Wang, H. Ji, L. He, C. Ye, C. Wang, S. Fang, and H. Zhang (2016). Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. J. Alloys Compd. 659, 101–111.

    Article  CAS  Google Scholar 

  13. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, R. Ladchumananandasiivam, U. U. Gomes, and M. Maaza (2016). Synthesis and characterization studies of NiO nanorods for enhancing Solar cell efficiency using photon up conversion materials. Ceram. Inter. 42, 8385–8394.

    Article  CAS  Google Scholar 

  14. C. P. Bai, X. F. Xiong, W. Q. Gong, D. X. Feng, M. Xian, Z. X. Ge, and N. Xu (2011). Removal of rhodamine B by ozone-based advanced oxidation process. Desalination 278, 84–90.

    Article  CAS  Google Scholar 

  15. L. Du, J. Wu, and C. Hu (2012). Electrochmical oxidation of Rhodamine B on RuO2-PdO TiO2/TiElectrode. Electrochim. Acta. 68, 69–73.

    Article  ADS  CAS  Google Scholar 

  16. M. F. Hou, L. Liao, W. D. Zhang, X. Y. Tang, H. F. Wan, and G. C. Yin (2011). Degradation of rhodamineB by Fe(0)-based Fenton process with H2O2. Chemosphere 83, 1279–1283.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. S. K. Das, P. Ghosh, I. Ghosh, and A. K. Guha (2008). Adsorption of rhodamine B on Rhizopusoryzae: Role of functional groups and cell wall components. Colloid. Surf. B. 65, 30–34.

    Article  CAS  Google Scholar 

  18. S. Shakir, A. F. Elkafrawy, H. F. Ghoneimy, S. G. E. Beheir, and M. Refaar (2010). Removal of RhodamineB (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater stimulants by ion flotation. Water Res. 44, 1449–1461.

    Article  CAS  PubMed  Google Scholar 

  19. X. Wang, J. Wang, P. Guo, W. Guo, and C. Wang (2009). Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2. J. Hazard. Mater. 169, 486–491.

    Article  CAS  PubMed  Google Scholar 

  20. F. Y. Hung-Lin Chen, X. X. Liu, H. Jing, B. Gao, D. Zou, and C. C. Chen (2021). Visible-light-driven photocatalysis of carbon dioxide and organic pollutants by MFeO2 (M = Li, Na, or K). J. Colloid Interface Sci. 601, 758–772.

    Article  ADS  PubMed  Google Scholar 

  21. Y. Y. Lin, F. Y. Kuo-Yu Hung, Y. M. D. Liu, and J. H. Lin (2022). Chiing-Chang Chen Photocatalysts of quaternary composite, bismuth oxyfluoride/bismuth oxyiodide/ graphitic carbon nitride: Synthesis, characterization, and photocatalytic activity. Mol. Catal. 528, 112463.

    Article  CAS  Google Scholar 

  22. A. Tony Dhiwahar, S. Maruthamuthu, R. Marnadu, M. Sundararajan, M. Aslam Manthrammel, P. Mohd Shkir, V. R. Sakthivel, and M. Reddy (2021). Improved photocatalytic degradation of rhodamine B under visible light and magnetic properties using microwave combustion grown Ni doped copper ferrite spinel nanoparticles. Solid State Sci. 113, 106542.

    Article  Google Scholar 

  23. A. T. Dhiwahar, S. Maruthamuthu, K. V. Chandekar, M. S. Hamdy, M. Shkir, M. Sundararajan, and P. Sakthivel (2021). Facile synthesis of Cu1- xCoxFe2O4 (0 ≤ x ≤ 0.5) nanoparticles with enhanced magnetic and photocatalytic performances for organic dye degradation. Adv. Powder. Technol. 32 (11), 4030–4041.

    Article  Google Scholar 

  24. C. Y. Toe, Z. Zheng, H. Wu, J. Scott, R. Amal, and Y. H. Ng (2018). Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self reduction, Angew. Chem. Int. 57, 13613–13617.

    Article  CAS  Google Scholar 

  25. H. Wu, X. Y. Kong, X. Wen, S. P. Chai, E. C. Lovell, J. Tangand, and Y. H. Ng (2021). Metal-organic framework decorated cuprous oxide nanowires for long lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem. Int. 60, 8455–8459.

    Article  CAS  Google Scholar 

  26. H. Wu, Z. Zheng, C. Y. Toe, X. Wen, J. N. Hart, R. Amal, and Y. H. Ng (2020). A pulse electrodeposited amorphous tunnel layer stabilises Cu2O for efficient photoelectrochemical water splitting under visible light irradiation. J. Mater. Chem. A. 8, 5638–5646.

    Article  CAS  Google Scholar 

  27. X. Wang, A. Wang, and J. Ma (2017). Visible-light-driven photocatalytic removal of antibiotics by newly designed C3N4@MnFe2O4-graphene nanocomposites. J. Hazard Mater. 336, 81–92.

    Article  CAS  PubMed  Google Scholar 

  28. W. Chen, Y. Zhou, J. Lu, X. Huang, W. Wu, C. Lin, and Q. Wang (2016). Effects of Li+substitution on the structural and magnetic properties of Co0.5Mn0.5Fe2O4 particles. Ceram. Inter. 42, 1114–1121.

    Article  CAS  Google Scholar 

  29. Y. Koseoglu, F. Alan, M. Tan, R. Yilgin, and M. Ozturk (2012). Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Inter. 38, 3625–3634.

    Article  CAS  Google Scholar 

  30. Z. Deligoz, A. Baykal, E. E. Tanrıverdi, Z. Durmus, and M. S. Toprak (2012). Synthesis, structural and electrical properties of triethylene glycol (TREG)stabilized Mn0.2Co0.8Fe2O4 NPs. Mater. Res. Bulletin. 47, 537–543.

    Article  CAS  Google Scholar 

  31. G. Raja, S. Gopinath, and K. Sivakumar (2016). Synthesis of spinel nanocrystalline ZnFe2O4: Structural, optical, magnetic and electrical properties. Ceram. Int. 42, 8763–8768.

    Article  CAS  Google Scholar 

  32. M. Sajjia, M. Oubaha, T. Prescott, and A. G. Olabi (2010). Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J. Alloys Comp. 506, 400–406.

    Article  CAS  Google Scholar 

  33. A. R. Denton and N. W. Ashcroft (1991). Vegard’s law. Phys. Rev. A. 43, 3161–3164.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. M. Shkir, K. V. Chandekar, T. Alshahrani, A. Kumar, and S. AlFaify (2020). A novel terbium doping effect on physical properties of lead sulfide nanostructures: A facile synthesis and characterization. J. Mater. Res. 35, 1–12.

    Article  Google Scholar 

  35. M. Sundararajan and L. John Kennedy (2017). Photocatalytic removal of rhodamine B under Irradiationof visible light using Co1-xCuxFe2O4 (0 ≤ x ≤ 0.5) nanoparticles. J. Environ. Chem. Eng. 5, 4075–4092.

    Article  CAS  Google Scholar 

  36. X. Liang, P. Liu, H. He, G. Wei, T. Chen, W. Tan, F. Tan, J. Zhu, and R. Zhu (2016). The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect formaldehyde catalytic oxidation. J. Hazard. Mater. 306, 305–312.

    Article  CAS  PubMed  Google Scholar 

  37. E. R. Kumar, R. Jayaprakash, G. S. Devi, and P. S. PrasadaReddy (2014). Magnetic, dielectric and sensing properties of manganese substituted copper ferrite nanoparticles. J. Magn. Magn. Mater. 355, 87–92.

    Article  ADS  CAS  Google Scholar 

  38. L. K. Wu, H. Wu, H. B. Zhang, H. Z. Cao, G. Y. Hou, Y. P. Tang, and G. Q. Zheng (2018). Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal fromWater. Chem. Eng. J. 334, 1808–1819.

    Article  CAS  Google Scholar 

  39. F. Y. Hung-Lin Chen, X. X. Liu, Y. Y. Lin, H. Jing, G. Y. Liu, B. Gao, D. Zou, and C. C. Chen (2022). Photoreduction of carbon dioxide and photodegradation of organic pollutants using alkali cobalt oxides MCoO2 (M = Li or Na) as catalysts. J. Environ. Manag. 313, 114930.

    Article  Google Scholar 

  40. M. A. Rehman, I. Yusoff, and Y. Alias (2015). Fluoride adsorption by doped and un-doped magnetic ferrites CuCexFe2-xO4: Preparation, characterization, optimization and modeling for effectual remediation technologies. J. Hazard. Mater. 299, 316–324.

    Article  CAS  PubMed  Google Scholar 

  41. M. Parthibavarman, V. Hariharan, and C. Sekar (2011). High-sensitivity humidity sensor based on SnO2nanoparticles synthesized by microwave irradiation method. Mater. Sci. Eng. C. 31, 840–844.

    Article  CAS  Google Scholar 

  42. V. Manikandan, M. Singh, B. C. Yadav, and J. C. Denardin (2018). Fabrication of lithium substituted copper ferrite (Li- CuFe2O4) thin film as an efficient gas sensor at room temperature. J. Sci. Adv. Mater. Dev. 3 (2), 145–150.

    Google Scholar 

  43. N. Subhashini, S. Revathi, M. Ubaidullah, A. M. Al-Enizi, S. Muthulakshmi, D. Thiripurasundari, S. F. Shaikh, A. Nafady, M. M. Abdulhameed, N. B. Alanzi, R. I. Alkhalifah, C. S. Dash, M. Sundararajan, and M. Sukumar (2023). Gd3+ substituted BiFeO3 perovskite nanoparticles: facile synthesis, characterization, and applications in heterogeneous catalysis. Dalton Trans. 52, 2735.

    Article  CAS  PubMed  Google Scholar 

  44. K. Jahanara and S. Farhadi (2019). A magnetically separable plate-like cadmium titanate–copper ferrite nanocomposite with enhanced visible-light photocatalytic degradation performance for organic contaminants. RSC Adv. 9, 15615.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. P. Kubelka and F. Munk (1931). EinBeitragzurOptik der farbanstriche. Z. Tech. Phys. 12, 593601.

    Google Scholar 

  46. M. T. Hammad, J. K. Salem, A. A. Amsha, and N. K. Hejazy (2018). Optical and magneticcharacterizations of zinc substituted copper ferrite synthesized by a co-precipitation chemical method. J. Alloys Compd. 741, 123–130.

    Article  CAS  Google Scholar 

  47. G. T. Anand and L. J. Kennedy (2013). One-pot microwave combustion synthesis of porous Zn1-xCu xAl2O4 (0 ≤ x ≤ 0.5) Spinel Nanostructures. J. Nanosci. Nanotech. 13, 1–8.

    Article  Google Scholar 

  48. S. K. Jesudoss, J. J. Vijaya, L. J. Kennedy, P. I. Rajan, H. A. Al-Lohedan, R. J. Ramalingam, K. Kaviyarasu, and M. Bououdina (2016). Studies on the efficient dual performanceof Mn1–xNixFe2O4 spinel, nanoparticles in photodegradation and antibacterial activity. J. Photochem. Photobiol. B: Biol. 165, 121–132.

    Article  CAS  Google Scholar 

  49. Y. Zhou, Y. Wang, T. Wen, S. Zhang, B. Chang, Y. Guo, and B. Yang (2016). Mesoporous Cd1xZnxSmicrospheres with tunable band gap and high specific surface areas for enhanced visible- ligh-driven hydrogen generation. J. Colloid. Interface Sci. 467, 97–104.

    Article  ADS  CAS  PubMed  Google Scholar 

  50. C. Murugan, R. A. Nataraj, M. P. Kumar, S. Ravichandran, and A. Pandikumar (2019). Enhance charge transfer process of bismuthvanadate interleaved graphitic carbon nitride nanohybrids in mediator-free direct Z Scheme photoelectrocatalytic water splitting. Energy Techn. Environ. Sci. 4, 4653–4663.

    CAS  Google Scholar 

  51. K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, and B. A. Najar (2018). Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. J. Phys. Chem. Solids. 115, 162–171.

    Article  ADS  CAS  Google Scholar 

  52. C. Qin, Z. Li, G. Chen, Y. Zhao, and T. Lin (2015). Fabrication and visible-light photocatalytic behaviorof perovskite praseodymium ferrite porous nanotubes. J. Power Sources. 285, 178–184.

    Article  ADS  CAS  Google Scholar 

  53. A. Aslam, M. Z. Abid, K. Rafiq, A. Rauf, and E. Hussain (2023). Tunable sulphur doping on CuFe2O4 nanostructures for the selective elimination of organic dyes from water. Sci. Rep. 13 (1), 6306.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. E. Hema, B. R. Venkatraman. Enhanced photo-catalytic activity of TiO2 supported Mn-codoped CuFe2O4 magnetically recyclable nano-composites.

  55. T. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, and R. J. Tayade (2011). Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem. Eng. J. 169, 126–134.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors (Jothi Ramalingam R) acknowledge the financial support through Researchers Supporting Project number (RSP2023R354) King Saud University, Riyadh 11451, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Tony Dhiwahar, Jothi Ramalingam Rajabathar or Chandra Sekhar Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiwahar, A.T., Revathi, S., Basith, N.M. et al. Investigation of Visible Light Driven Photocatalytic Activity of Mn Doped CuFe2O4 Nanoparticles. J Clust Sci 35, 779–798 (2024). https://doi.org/10.1007/s10876-023-02508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02508-6

Keywords

Navigation