Skip to main content

Advertisement

Log in

Structural Features, Superatomic Properties, and Adsorptions of Zn–Cd Nanoalloy

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zn–Cd alloys are important industrial materials which have attracted much attentions in recent years. But, few reports on Zn–Cd clusters are currently available. An interesting structural feature in previous studies is that Zn and Cd atoms do not mix in binary Zn–Cd clusters. However, the analysis based on the empirical potential function can only give very limited structure information about them. Here, geometric structures of (Zn–Cd)n (= 1–9) clusters are globally searched by the unbiasedly genetic algorithm with DFT methods. We found that the ground state structures of Zn–Cd clusters are singlet states and prefer compact characteristics, where the Cd atoms prefer to be located on the surfaces of the structures, thus coating Zn atoms that are for the kernel growths. The Eb and Δ2E results show that the (Zn–Cd)2 and (Zn–Cd)5 clusters have higher stability than that of their neighbors. The molecular dynamics simulations verify that they still have excellent thermal stability at 700 K. The molecular orbitals and DOS reveal that the 8/20 valence electrons of the (Zn–Cd)2 and (Zn–Cd)5 clusters fill the superatomic shells resulting in electronic configurations of 1S21P6/1S21P61D102S2, respectively. Moreover, we considered different adsorption structures of (Zn–Cd)2 with one CO molecule, and only the four stable isomers are finally obtained. It is found that the CO in the form of molecule is adsorbed on the cluster, resulting in the unbroken C–O bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available upon request from the corresponding authors.

References

  1. O. Schulte and W. B. Holzapfel (1996). Phys. Rev. B 53, 569.

    Article  CAS  Google Scholar 

  2. R. Ferrando, J. Jellinek, and R. L. Johnston (2008). Chem. Rev. 108, 845.

    Article  CAS  PubMed  Google Scholar 

  3. R. Bohl and V. Hildebrandt (1957). J. Am. Chem. Soc. 79, 2711.

    Article  CAS  Google Scholar 

  4. F. Meydaneri, B. Saatçi, M. Gündüz, and M. Özdemir (2007). Surf. Sci. 601, 2171.

    Article  CAS  Google Scholar 

  5. O. Awe and A. Azeez (2017). Appl. Phys. A 123, 1.

    Article  CAS  Google Scholar 

  6. R. Hatz, V. Hanninen, and L. Halonen (2014). J. Phys. Chem. A 118, 12274.

    Article  CAS  PubMed  Google Scholar 

  7. L. Amirouche and Ş Erkoç (2004). Phys. Stat. Sol. 241, 292.

    Article  CAS  Google Scholar 

  8. L. Amirouche and Ş Erkoç (2005). J. Cryst. Growth 275.

    Article  CAS  Google Scholar 

  9. H. Limbu and G. Adhikari (2020). Int. J. Phys. 8, 81.

    Article  CAS  Google Scholar 

  10. C. Zanvettor and J. Marques (2014). Chem. Phys. Lett. 608, 373.

    Article  CAS  Google Scholar 

  11. Y. Wang, X. Chen, and C. Chen (2021). Inorg. Chem. Commun. 134.

    Article  CAS  Google Scholar 

  12. S. J. McCormack and A. Navrotsky (2021). Acta Mater. 202, 1.

    Article  CAS  Google Scholar 

  13. O. Akinlade and O. Awe (2006). Int. J. Mater. Res. 97, 377.

    Article  CAS  Google Scholar 

  14. A. Pola, M. Tocci, and F. E. Goodwin (2020). Metals 10, 253.

    Article  CAS  Google Scholar 

  15. P. Fima and R. Novakovic (2018). Philos. Mag. 98, 1608.

    Article  CAS  Google Scholar 

  16. O. Fornaro and H. A. Palacio (2006). Scripta Mater. 54, 2149.

    Article  CAS  Google Scholar 

  17. B. Saatçi, M. Ari, M. Gündüz, F. Meydaneri, M. Bozoklu, and S. Durmuş (2006). J. Phys-Condens Mat. 18, 10643.

    Article  Google Scholar 

  18. R. Koirala, B. Singh, I. Jha, and D. Adhikari (2013). J. Mol. Liq. 179, 60.

    Article  CAS  Google Scholar 

  19. G. Shrestha and I. Koirala (2021). J. Nepal Phys. Soc. 7, 17.

    Google Scholar 

  20. H. S. Oh, S. J. Kim, K. Odbadrakh, W. H. Ryu, K. N. Yoon, S. Mu, F. Körmann, Y. Ikeda, C. C. Tasan, and D. Raabe (2019). Nat. Commun. 10, 1.

    Article  Google Scholar 

  21. A. Smekhova, A. Kuzmin, K. Siemensmeyer, C. Luo, K. Chen, F. Radu, E. Weschke, U. Reinholz, A. G. Buzanich, and K. V. Yusenko (2022). Nano Res. 15, 4845.

    Article  CAS  Google Scholar 

  22. G. L. Hart, T. Mueller, C. Toher, and S. Curtarolo (2021). Nat. Rev. Mater. 6, 730.

    Article  Google Scholar 

  23. S. Sarkar, O. Eriksson, D. Sarma, and I. Di Marco (2022). Phys. Rev. B 105.

    Article  CAS  Google Scholar 

  24. A. Lebon, A. Aguado, and A. Vega (2015). Phys. Chem. Chem. Phys. 17, 28033.

    Article  CAS  PubMed  Google Scholar 

  25. R. B. Adamson, C. E. Coleman, and M. Griffiths (2019). J. Nucl. Mater. 521, 167.

    Article  CAS  Google Scholar 

  26. V. Roche, G. Koga, T. Matias, C. Kiminami, C. Bolfarini, W. Botta, R. Nogueira, and A. J. Junior (2019). J. Alloys Compd. 774, 168.

    Article  CAS  Google Scholar 

  27. C. Yan, K. Sun, J. Huang, S. Johnston, F. Liu, B. P. Veettil, K. Sun, A. Pu, F. Zhou, and J. A. Stride (2017). ACS Energy Lett. 2, 930.

    Article  CAS  Google Scholar 

  28. L. Amirouche and Ş Erkoç (2003). Int. J. Mod. Phys. C 14, 905.

    Article  CAS  Google Scholar 

  29. L. Amirouche and Ş Erkoç (2003). Phys. Rev. A 68.

    Article  Google Scholar 

  30. A. C. Reber and S. N. Khanna (2017). Acc. Chem. Res. 50, 255.

    Article  CAS  PubMed  Google Scholar 

  31. J. U. Reveles, P. A. Clayborne, A. C. Reber, S. N. Khanna, K. Pradhan, P. Sen, and M. R. Pederson (2009). Nature Chem. 1, 310.

    Article  CAS  Google Scholar 

  32. P. Jena and Q. Sun (2018). Chem. Rev. 118, 5755.

    Article  CAS  PubMed  Google Scholar 

  33. D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna (2004). Science 304, 84.

    Article  CAS  PubMed  Google Scholar 

  34. S. Heiles, A. J. Logsdail, R. Schäfer, and R. L. Johnston (2012). Nanoscale 4, 1109.

    Article  CAS  PubMed  Google Scholar 

  35. S. G. Neogi and P. Chaudhury (2012). J. Comput. Chem. 33, 629.

    Article  CAS  PubMed  Google Scholar 

  36. S. Ganguly and P. Neogi (2014). J. Comput. Chem. 35, 51.

    Article  Google Scholar 

  37. M. Aslan, J. B. Davis, and R. L. Johnston (2016). Phys. Chem. Chem. Phys. 18, 6676.

    Article  CAS  PubMed  Google Scholar 

  38. Q. Liu, P. Fan, Y. Hu, F. Wang, and L. Cheng (2021). Phys. Chem. Chem. Phys. 23, 10946.

    Article  CAS  PubMed  Google Scholar 

  39. Z. Tian and L. Cheng (2017). J. Phys. Chem. C 121, 20458.

    Article  CAS  Google Scholar 

  40. J. Zhao, Q. Du, S. Zhou, and V. Kumar (2020). Chem. Rev. 120, 9021.

    Article  CAS  PubMed  Google Scholar 

  41. J. P. Perdew, K. Burke, and M. Phys (1996). Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  42. F. Weigend and R. Ahlrichs (2005). Phys. Chem. Chem. Phys. 7, 3297.

    Article  CAS  PubMed  Google Scholar 

  43. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09; Revision B. 01 (Gaussian Inc, Wallingford, 2010).

    Google Scholar 

  44. U. Varetto, MOLEKEL version 5.4.0.8 (Swiss National Supercomputing Centre, Manno, Switzerland, 2009)

  45. T. Lu and F. Chen (2012). J. Comput. Chem. 33, 580.

    Article  PubMed  Google Scholar 

  46. J. Hafner (2008). J. Comput. Chem. 29, 2044.

    Article  CAS  PubMed  Google Scholar 

  47. M. E. Tuckerman, P. J. Ungar, T. Von Rosenvinge, and M. L. Klein (1996). J. Phys. Chem. 100, 12878.

    Article  CAS  Google Scholar 

  48. B. Yin and Z. Luo (2021). Coordin Chem. Rev. 429.

    Article  CAS  Google Scholar 

  49. H. Häkkinen (2008). Chem. Soc. Rev. 37, 1847.

    Article  PubMed  Google Scholar 

  50. E. A. Doud, A. Voevodin, T. J. Hochuli, A. M. Champsaur, C. Nuckolls, and X. Roy (2020). Nat. Rev. Mater. 5, 371.

    Article  Google Scholar 

  51. N. V. Tkachenko and A. I. Boldyrev (2019). Phys. Chem. Chem. Phys. 21, 9590.

    Article  CAS  PubMed  Google Scholar 

  52. M. A. Tofanelli, K. Salorinne, T. W. Ni, S. Malola, B. Newell, B. Phillips, H. Häkkinen, and C. J. Ackerson (2016). Chem. Sci. 7, 1882.

    Article  CAS  PubMed  Google Scholar 

  53. Z. Luo, A. Castleman Jr., and S. N. Khanna (2016). Chem. Rev. 116, 14456.

    Article  CAS  PubMed  Google Scholar 

  54. W. T. Wallace and R. L. Whetten (2002). J. Am. Chem. Soc. 124, 7499.

    Article  CAS  PubMed  Google Scholar 

  55. Y. Gao, N. Shao, Y. Pei, Z. Chen, and X. C. Zeng (2011). ACS Nano 5, 7818.

    Article  CAS  PubMed  Google Scholar 

  56. Y. Gao, N. Shao, Y. Pei, and X. C. Zeng (2010). Nano Lett. 10, 1055.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the Horizontal Cooperation Project of Huainan Normal University (2022HX47) and the Key Project of Scientific Research Foundation of Anhui Province Education Department (KJ2021A0962). The calculations were carried out at the High-Performance Computing Center of Anhui University.

Author information

Authors and Affiliations

Authors

Contributions

YM: Methodology, Software, Writing—original draft. QL: Writing - review & editing. LC: Supervision. All authors reviewed the manuscript

Corresponding authors

Correspondence to Qiman Liu or Longjiu Cheng.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 357 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Liu, Q. & Cheng, L. Structural Features, Superatomic Properties, and Adsorptions of Zn–Cd Nanoalloy. J Clust Sci 35, 159–166 (2024). https://doi.org/10.1007/s10876-023-02472-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02472-1

Keywords

Navigation