Skip to main content
Log in

Physico-Chemical Attributes and Photodegradation Assessment of Crystal Violet Dye by Utilizing TiO2/Sn2S3 (Sn = 0.25, 0.50, 0.75 M) Nanocomposite Prepared Via Hydrothermal Strategy

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This work aims to prepare TiO2/Sn2S3 quantum dots by simple hydrothermal method. The Sn compound present in the quantum dots were varied in the molar ratio of 0.25 M, 0.50 M and 0.75 M. Furthermore, a comparative analysis was performed using their pristine counterparts. Analysis such as XRD, UV–Visible analysis, FTIR, photoluminescence, HR-SEM, EDAX, HR-TEM, SAED and photocatalytic analysis were performed to identify the various morphology and characteristics of the samples. TiO2/Sn2S3 quantum dots possessed tetragonal (anatase) and orthorhombic crystal structure. Crystal violet dye was used to determine the degradation capability of the samples. TiO2/Sn2S3 quantum dots with a molar ratio of 0.25 Sn showed a good photocatalytic degradation efficiency of 75.93% for 60 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. H. Adawiyah, Z. N. Jameel, and I. H. M. Alussaini (2019). Review on: titanium dioxide applications. Energy Procedia 157, 17–29.

    Article  Google Scholar 

  2. U. G. Akpan and B. H. Hameed (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of hazardous materials 170 (2–3), 520–529.

    Article  CAS  PubMed  Google Scholar 

  3. H. Kangkai, E. Lei, D. Zhao, C. Hu, J. Cui, L. Lai, Q. Xiong, and Z. Liu (2018). Hydrothermal synthesis of a rutile/anatase TiO2 mixed crystal from potassium titanyl oxalate: crystal structure and formation mechanism. CrystEngComm 20 (24), 3363–3369.

    Article  Google Scholar 

  4. N. Sofyan, A. Ridhova, A. H. Yuwono, and A. Udhiarto (2018). Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell. In IOP Conference Series: Materials Science and Engineering 316 (1), 012055.

    Article  Google Scholar 

  5. A. S. Saja and H. R. Saud (2016). New route for synthesis of pure anatase TiO2 nanoparticles via utrasound-assisted sol-gel method. J. Chem. Pharm. Res 8 (2), 620–626.

    Google Scholar 

  6. A. Muthuvinayagam, T. Manovah David, and P. Sagayaraj (2013). Investigation on a one-pot hydrothermal approach for synthesizing high quality SnS quantum dots. Journal of alloys and compounds 579, 594–598.

    Article  CAS  Google Scholar 

  7. X. Hu, G. Song, W. Li, Y. Peng, L. Jiang, Y. Xue, Q. Liu, Z. Chen, and H. Junqing (2013). Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals. Materials Research Bulletin 48 (6), 2325–2332.

    Article  CAS  Google Scholar 

  8. B. Ajinkya, A. Pawbake, P. Sharma, S. Nair, A. Funde, P. Bankar, M. More, and S. Jadkar (2018). Solvothermal synthesis of tin sulfide (SnS) nanorods and investigation of its field emission properties. Applied Physics A 124, 1–8.

    Google Scholar 

  9. D. Avellaneda, I. Sánchez-Orozco, J. A. A. Martínez, S. Shaji, and B. Krishnan (2018). Thin films of tin sulfides: Structure, composition and optoelectronic properties. Materials Research Express 6 (1), 016409.

    Article  Google Scholar 

  10. Lee A. Burton, Diego Colombara, Ruben D. Abellon, Ferdinand C. Grozema, Laurence M. Peter, Tom J. Savenije, Gilles Dennler, and Aron Walsh (2013). Synthesis, characterization, and electronic structure of single-crystal SnS, Sn2S3, and SnS2. Chemistry of Materials 25 (24), 4908–4916.

    Article  CAS  Google Scholar 

  11. K. Malik Dilshad, J. Akhtar, M. A. Malik, M. Akhtar, and N. Revaprasadu (2015). Phase-pure fabrication and shape evolution studies of SnS nanosheets. New Journal of Chemistry 39 (12), 9569–9574.

    Article  Google Scholar 

  12. R. Godoy-Rosas, S. Barraza-Felix, R. Ramirez-Bon, R. Ochoa-Landin, H. A. Pineda-Leon, M. Flores-Acosta, S. G. Ruvalcaba-Manzo, M. C. Acosta-Enriquez, and S. J. Castillo (2017). Synthesis and characterization of Sn2S3 as nanoparticles, powders and thin films, using soft chemistry reactions. Chalcogenide Lett 14, 365–371.

    CAS  Google Scholar 

  13. Emine Güneri, Fatma Göde, Behiye Boyarbay, and Cebrail Gümüş (2012). Structural and optical studies of chemically deposited Sn2S3 thin films. Materials Research Bulletin 47 (11), 3738–3742.

    Article  Google Scholar 

  14. Yu. Wang, Hao Gong, Benhu Fan, and Hu. Guangxia (2010). Photovoltaic behavior of nanocrystalline SnS/TiO2. The Journal of Physical Chemistry C 114 (7), 3256–3259.

    Article  CAS  Google Scholar 

  15. Y. Jia, F. Yang, F. Cai, C. Cheng, and Y. Zhao (2013). Photoelectrochemical and charge transfer properties of SnS/TiO2 heterostructure nanotube arrays. Electronic Materials Letters 9, 287–291.

    Article  CAS  Google Scholar 

  16. J. Shao, Z.-D. Zhang, X.-T. Wang, X.-D. Zhao, X.-B. Ning, J. Lei, X.-R. Li, and B.-R. Hou (2018). Synthesis and photocathodic protection properties of nanostructured SnS/TiO2 composites. Journal of the Electrochemical Society 165 (10), H601.

    Article  CAS  Google Scholar 

  17. N. Verma, T. S. Chundawat, H. Chandra, and D. Vaya (2023). An efficient time reductive photocatalytic degradation of carcinogenic dyes by TiO2-GO nanocomposite. Materials Research Bulletin 158, 112043.

    Article  CAS  Google Scholar 

  18. S. Bhowmick, C. P. Saini, B. Santra, L. Walczak, A. Semisalova, M. Gupta, and A. Kanjilal (2023). Modulation of the Work Function of TiO2 Nanotubes by Nitrogen Doping: Implications for the Photocatalytic Degradation of Dyes. ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.2c03587.

    Article  Google Scholar 

  19. K. Li-Heng, K.-S. Chuang, H. Niruba Catherine, J.-H. Huang, H.-J. Hsu, Y. C. - Shen, and C. Hu (2023). MoS2-coupled coniferous ZnO for photocatalytic degradation of dyes. Journal of the Taiwan Institute of Chemical Engineers 142, 1046.

    Google Scholar 

  20. W. Tio Putra, H. Mafiraji Atmoko, Y. Stiadi, and Y. Eka Putri (2023). CuFe2O4/activated carbon nanocomposite for efficient photocatalytic degradation of dye: Green synthesis approaches using the waste of oil palm empty bunches and bio-capping agent.". Case Studies in Chemical and Environmental Engineering. https://doi.org/10.1016/j.cscee.2023.100305.

    Article  Google Scholar 

  21. K. Shah Reem (2023). Efficient photocatalytic degradation of methyl orange dye using facilely synthesized α-Fe2O3 nanoparticles. Arabian Journal of Chemistry 16 (2), 104444.

    Article  Google Scholar 

  22. J. K. Rath, C. Prastani, D. E. Nanu, M. Nanu, R. E. I. Schropp, A. Vetushka, M. Hývl, and A. Fejfar (2014). Fabrication of SnS quantum dots for solar-cell applications: Issues of capping and doping. Physica Status Solidi (b) 251 (7), 1309–1321.

    Article  CAS  Google Scholar 

  23. F. Scarpelli, T. F. Mastropietro, T. Poerio, and N. Godbert (2018). Mesoporous TiO2 thin films: State of the art. Titanium Dioxide-Material for a Sustainable Environment 508 (1), 135–142.

    Google Scholar 

  24. M. Ahmad, M. R. Foroughi, and M. R. Monshi (2012). Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World journal of nano science and engineering 2 (3), 154–160.

    Article  Google Scholar 

  25. Y. T. Prabhu, K. V. Rao, V. S. S. Kumar, and B. S. Kumari (2014). X-Ray Analysis by Williamson-Hall and Size-Strain Plot Methods of ZnO Nanoparticles with Fuel Variation. World Journal of Nano Science and Engineering 4, 21–28.

    Article  CAS  Google Scholar 

  26. N. Ekthammathat, T. Thongtem, A. Phuruangrat, and S. Thongtem (2012). Facile hydrothermal synthesis and optical properties of monoclinic CePO4 nanowires with high aspect ratio. Journal of Nanomaterials 2012, 7–7.

    Article  Google Scholar 

  27. S. Rekha Garg, P. Rajaram, and P. K. Bajpai (2018). Growth, characterization and estimation of lattice strain and size in CdS nanoparticles: X-ray peak profile analysis. Indian Journal of Physics 92 (5), 595–603.

    Article  Google Scholar 

  28. M. A. Vadivel, V. Samuel, and V. Ravi (2006). Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Materials Letters 60 (4), 479–480.

    Article  Google Scholar 

  29. R. T. Srinivasa and M. C. Santhosh Kumar (2016). Effect of substrate temperature on the physical properties of co-evaporated Sn2S3 thin films. Ceramics International 42 (10), 12262–12269.

    Article  Google Scholar 

  30. G. Shanmugam and S. Brahadeeswaran (2012). Spectroscopic, thermal and mechanical studies on 4-methylanilinium p-toluenesulfonate–a new organic NLO single crystal. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 95, 177–183.

    Article  CAS  PubMed  Google Scholar 

  31. S. Gimenez, H. K. Dunn, P. Rodenas, F. Fabregat-Santiago, S. G. Miralles, E. M. Barea, R. Trevisan, A. Guerrero, and J. Bisquert (2012). Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. Journal of Electroanalytical Chemistry 668, 119–125.

    Article  CAS  Google Scholar 

  32. D. Mohd Arif, D. Govindarajan, and G. Nabi Dar (2021). Facile synthesis of SnS nanostructures with different morphologies for supercapacitor and dye-sensitized solar cell applications. Journal of Materials Science: Materials in Electronics 32, 20394–20409.

    Google Scholar 

  33. D. B. Lalitha, K. Mohan Rao, and D. Ramananda (2020). Spectroscopic investigation of green synthesized ZnS nanoparticles encapsulated by sodium carboxy methyl cellulose. Applied Physics A 126, 1–11.

    Google Scholar 

  34. Y. Yu, W. Wen, X.-Y. Qian, J.-B. Liu, and W. Jin-Ming (2017). UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations. Scientific reports 7 (1), 41253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Sabiha, T. Özer, and M. Zor (2009). Vibrational and X-ray diffraction spectra of SnS film deposited by chemical bath deposition method. The European Physical Journal-Applied Physics 47 (3), 30502.

    Article  Google Scholar 

  36. R. Syamsai, C. Abhishek Pandey, R. Ramchandran, S. K. Jeon, and A. Nirmala Grace (2018). Wet chemical synthesis of SnS/graphene nanocomposites for high performance supercapacitor electrodes. International Journal of Nanoscience 17, 1760022.

    Article  Google Scholar 

  37. U. Ahmad, M. S. Akhtar, R. I. Badran, M. Abaker, S. H. Kim, A. Al-Hajry, and S. Baskoutas (2013). Electrical properties of solution processed p-SnS nanosheets/n-TiO2 heterojunction assembly. Applied Physics Letters 103 (10), 101602.

    Article  Google Scholar 

  38. A. Feride, A. S. Kazachenko, N. Y. Vasilyeva, and Y. N. Malyar (2020). Synthesis and characterization of starch sulfates obtained by the sulfamic acid-urea complex. Journal of Molecular Structure 1208, 127899.

    Article  Google Scholar 

  39. J. Srivind, S. Balamurugan, K. Usharani, D. Prabha, M. Suganya, V. S. Nagarethinam, and A. R. Balu (2018). Visible light irradiated photocatalytic and magnetic properties of Fe-doped SnS2 nanopowders. Journal of Materials Science: Materials in Electronics 29, 9016–9024.

    CAS  Google Scholar 

  40. Z. Zhang, C. Shao, X. Li, Y. Sun, M. Zhang, M. Jingbo, P. Zhang, Z. Guo, and Y. Liu (2013). Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 5 (2), 606–618.

    Article  CAS  PubMed  Google Scholar 

  41. A. Adak, M. Bandyopadhyay, and A. Pal (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Separation and purification technology 44 (2), 139–144.

    Article  CAS  Google Scholar 

  42. Z. Y. Cai, J. Li, and H. Y. Xu (2012). One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr (VI). Applied Catalysis B: Environmental 123, 18–26.

    Google Scholar 

  43. K. A. Isai and V. S. Shrivastava (2019). Photocatalytic degradation of methylene blue using ZnO and 2% Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. SN Applied Sciences. https://doi.org/10.1007/s42452-019-1279-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mary Linet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, G.H., Shaly, A.A., Matharasi, A. et al. Physico-Chemical Attributes and Photodegradation Assessment of Crystal Violet Dye by Utilizing TiO2/Sn2S3 (Sn = 0.25, 0.50, 0.75 M) Nanocomposite Prepared Via Hydrothermal Strategy. J Clust Sci 34, 3013–3029 (2023). https://doi.org/10.1007/s10876-023-02443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02443-6

Keywords

Navigation