Skip to main content

Advertisement

Log in

Design of Experiment Navigated Methodical Development of Neem Oil Nanoemulsion Containing Tea Tree Oil for Dual Effect Against Dermal Illness: Ex Vivo Dermatokinetic and In Vivo

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study was designed to develop neem oil nanoemulsion of tea tree oil (TTO-NO-NE) using design of experiment based Box–Behnken design, which provided thermodynamic stable NE with globule size of 174 nm, and PDI 0.28, respectively. Whereas the zeta potential of optimized NE has occurred as − 20 mV with spherical and non-segregated in shape. Next, TTO-NO-NE-loaded nanogel and conventional gel were prepared, and initially, a comparative evaluation was performed for homogeneity, pH, spreadability, extrudability, and drug content. Furthermore, in vitro release pattern, ex vivo dermatokinetic profile, in vivo skin safety study, and stability of nanogel was determined. Comparative in vitro release study showed significantly sustained release of drug from nanogel (p < 0.005) when compared to the conventional gel. Simultaneously, a comparative ex vivo dermatokinetic study demonstrated significantly maximum drug deposition for nanogel (p < 0.05) than conventional gel. Moreover, in vivo skin safety study exhibited no signs of toxicity in terms of zero scoring for nanogel and was considered safe for future use. Finally, a stability study showed no significant (p > 0.05) variation in the pH, spreadability, extrudability, and drug content of optimized nanogel, which claims good stability for nanogel after 6 months of storage in prescribed environmental conditions. Thus, it can be concluded that the developed novel nanogel is a promising therapeutic asset that can mitigate dermal infections effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Flohr and R. Hay (2021). Putting the burden of skin diseases on the global map. Br. J. Dermatol. 184, 189–190. https://doi.org/10.1111/bjd.19704.

    Article  CAS  PubMed  Google Scholar 

  2. K. J. Pulsipher, M. D. Szeto, C. W. Rundle, C. L. Presley, M. R. Laughter, and R. P. Dellavalle (2021). Global burden of skin disease representation in the literature: bibliometric analysis. JMIR Dermatol. 4, e29282. https://doi.org/10.2196/29282.

    Article  Google Scholar 

  3. A. R. Hilles, S. Mahmood, M. A. Kaderi, and R. Hashim (2019). Review of fungal skin infections and their invasion. Fungal Territ. 2, 3–5. https://doi.org/10.36547/ft.2019.2.2.3-5.

    Article  Google Scholar 

  4. R. J. Hay, M. Augustin, C. E. M. Griffiths, and W. Sterry (2015). The global challenge for skin health. Br. J. Dermatol. 172, 1469–1472. https://doi.org/10.1111/bjd.13854.

    Article  CAS  PubMed  Google Scholar 

  5. NIAMS, Skin diseases, U.S. Department of Health & Human Services (2021). https://www.niams.nih.gov/health-topics/skin-diseases. Accessed 9 Jan 2021.

  6. I. E. Cock and S. F. Van Vuuren (2020). A review of the traditional use of southern African medicinal plants for the treatment of fungal skin infections. J. Ethnopharmacol. 251, 112539. https://doi.org/10.1016/j.jep.2019.112539.

    Article  CAS  PubMed  Google Scholar 

  7. A. Garg, G. S. Sharma, A. K. Goyal, G. Ghosh, S. C. Si, and G. Rath (2020). Recent advances in topical carriers of anti-fungal agents. Heliyon 6, 1–12. https://doi.org/10.1016/j.heliyon.2020.e04663.

    Article  Google Scholar 

  8. J. Roana, N. Mandras, D. Scalas, P. Campagna, and V. Tullio (2021). Antifungal activity of Melaleuca alternifolia essential oil (Tto) and its synergy with itraconazole or ketoconazole against Trichophyton rubrum. Molecules 26, 1–10. https://doi.org/10.3390/molecules26020461.

    Article  CAS  Google Scholar 

  9. N. S. Lam, X. Long, X. Z. Su, and F. Lu (2020). Melaleuca alternifolia (tea tree) oil and its monoterpene constituents in treating protozoan and helminthic infections. Biomed. Pharmacother. 130, 110624. https://doi.org/10.1016/j.biopha.2020.110624.

    Article  CAS  PubMed  Google Scholar 

  10. M. Wróblewska, E. Szymańska, and K. Winnicka (2021). The influence of tea tree oil on antifungal activity and pharmaceutical characteristics of Pluronic® F-127 gel formulations with ketoconazole. Int. J. Mol. Sci. 22, 11326. https://doi.org/10.3390/ijms222111326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. P. Sudan, M. Goswami, and J. Singh (2020). Exploration of antifungal potential of Azadirachta indica against Microsporum gypseum. Biomed. Pharmacol. J. 13, 921–925. https://doi.org/10.13005/bpj/1960.

    Article  CAS  Google Scholar 

  12. S. Uzzaman (2020). Pharmacological activities of neem (Azadirachta indica): a review. Int. J. Pharmacogn. Life Sci. 1, 38–41. https://doi.org/10.33545/27072827.2020.v1.i1a.8.

    Article  Google Scholar 

  13. A. Eqbal, V. A. Ansari, A. Hafeez, F. Ahsan, M. Imran, and S. Tanweer (2021). Recent applications of nanoemulsion based drug delivery system: a review. Res J Pharm Technol. https://doi.org/10.52711/0974-360X.2021.00502.

    Article  Google Scholar 

  14. S. Verma and P. Utreja (2019). Vesicular nanocarrier based treatment of skin fungal infections: potential and emerging trends in nanoscale pharmacotherapy. Asian J. Pharm. Sci. 14, 117–129. https://doi.org/10.1016/j.ajps.2018.05.007.

    Article  PubMed  Google Scholar 

  15. B. P. Manjula, V. G. Joshi, R. S. Setty, and M. Geetha (2021). Simultaneous estimation of tea tree oil and neem seed oil in bulk and cosmeceutical formulation by UV spectrophotometry. Int. J. Pharm. Sci. Res. 12, 3264–3271. https://doi.org/10.13040/IJPSR.0975-8232.12(6).3264-71.

    Article  CAS  Google Scholar 

  16. K. Patel, S. Padhye, and M. Nagarsenker (2011). Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design. AAPS PharmSciTech. 13, 125–133. https://doi.org/10.1208/s12249-011-9727-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. K. M. Hosny, A. M. Sindi, H. M. Alkhalidi, M. Kurakula, A. H. Hassan, R. B. Bakhaidar, W. A. Abualsunun, A. M. Almehmady, A. Khames, W. Y. Rizg, R. A. Khallaf, N. K. Alruwaili, and N. A. Alhakamy (2021). Development of omega-3 loxoprofen-loaded nanoemulsion to limit the side effect associated with NSAIDs in treatment of tooth pain. Drug Deliv. 28, 741–751. https://doi.org/10.1080/10717544.2021.1909179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Kumar, J. Ali, and S. Baboota (2016). Design Expert® supported optimization and predictive analysis of selegiline nanoemulsion via the olfactory region with enhanced behavioural performance in Parkinson’s disease. Nanotechnology 27, 1–24. https://doi.org/10.1088/0957-4484/27/43/435101.

    Article  CAS  Google Scholar 

  19. S. Md, N. A. Alhakamy, H. M. Aldawsari, M. Husain, S. Kotta, S. T. Abdullah, U. A. Fahmy, M. A. Alfaleh, and H. Z. Asfour (2020). Formulation design, statistical optimization, and in vitro evaluation of a naringenin nanoemulsion to enhance apoptotic activity in a549 lung cancer cells. Pharmaceuticals 13, 1–21. https://doi.org/10.3390/ph13070152.

    Article  CAS  Google Scholar 

  20. M. U. Ashhar, S. Kumar, J. Ali, and S. Baboota (2021). CCRD based development of bromocriptine and glutathione nanoemulsion tailored ultrasonically for the combined anti-Parkinson effect. Chem. Phys. Lipids 235, 1–14. https://doi.org/10.1016/j.chemphyslip.2020.105035.

    Article  CAS  Google Scholar 

  21. M. K. Iqubal, A. Iqubal, K. Imtiyaz, M. M. A. Rizvi, M. M. Gupta, J. Ali, and S. Baboota (2021). Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur. J. Pharm. Biopharm. 163, 223–239. https://doi.org/10.1016/j.ejpb.2021.04.007.

    Article  CAS  PubMed  Google Scholar 

  22. S. Kotta, A. W. Khan, S. H. Ansari, R. K. Sharma, and J. Ali (2015). Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv. 22, 455–466. https://doi.org/10.3109/10717544.2013.866992.

    Article  CAS  PubMed  Google Scholar 

  23. V. Bali, M. Ali, and J. Ali (2010). Study of surfactant combinations and development of a novel nanoemulsion for minimising variations in bioavailability of ezetimibe. Colloids Surf. B 76, 410–420. https://doi.org/10.1016/j.colsurfb.2009.11.021.

    Article  CAS  Google Scholar 

  24. A. S. Rabelo, F. K. Sutili, J. O. Meneses, P. Severino, E. B. Souto, R. Y. Fujimoto, and J. C. Cardoso (2021). 23 Central composite rotatable design for the production of neem oil nanoemulsion for antifungal and antiparasitic applications. J. Chem. Technol. Biotechnol. 96, 2159–2167. https://doi.org/10.1002/jctb.6623.

    Article  CAS  Google Scholar 

  25. J. Shah, A. B. Nair, S. Jacob, R. K. Patel, H. Shah, T. M. Shehata, and M. A. Morsy (2019). Nanoemulsion based vehicle for effective ocular delivery of moxifloxacin using experimental design and pharmacokinetic study in rabbits. Pharmaceutics 11, 230. https://doi.org/10.3390/pharmaceutics11050230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. S. Alam, M. S. Algahtani, J. Ahmad, K. Kohli, S. Shafiq-Un-Nabi, M. H. Warsi, and M. Z. Ahmad (2020). Formulation design and evaluation of aceclofenac nanogel for topical application. Ther. Deliv. 11, 767–778. https://doi.org/10.4155/tde-2020-0076.

    Article  CAS  PubMed  Google Scholar 

  27. R. Aiyalu, A. Govindarjan, and A. Ramasamy (2016). Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal model, Brazilian. J. Pharm. Sci. 52, 493–507. https://doi.org/10.1590/s1984-82502016000300015.

    Article  CAS  Google Scholar 

  28. M. K. Iqubal, A. Iqubal, H. Anjum, M. M. Gupta, J. Ali, and S. Baboota (2021). Determination of in vivo virtue of dermal targeted combinatorial lipid nanocolloidal based formulation of 5-fluorouracil and resveratrol against skin cancer. Int. J. Pharm. 610, 121179. https://doi.org/10.1016/j.ijpharm.2021.121179.

    Article  CAS  PubMed  Google Scholar 

  29. A. Qadir, M. Aqil, A. Ali, M. H. Warsi, M. Mujeeb, F. J. Ahmad, S. Ahmad, and S. Beg (2020). Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: systematic optimization, dermatokinetic and preclinical evaluation. J. Drug Deliv. Sci. Technol. 57, 101775. https://doi.org/10.1016/j.jddst.2020.101775.

    Article  CAS  Google Scholar 

  30. R. Gupta and G. Das Gupta (2017). Formulation development and evaluation of anti-inflammatory potential of cordia obliqua topical gel on animal model. Pharmacogn. J. 9, s93–s98. https://doi.org/10.5530/pj.2017.6s.163.

    Article  CAS  Google Scholar 

  31. V. Thakur, B. Prashar, and S. Arora (2012). Formulation and in vitro evaluation of gel for topical delivery of antifungal agent fluconazole using different penetration enhancers. Drug Invent. Today 4, 414–419.

    CAS  Google Scholar 

  32. T. Moolakkadath, M. Aqil, A. Ahad, S. S. Imam, A. Praveen, Y. Sultana, M. Mujeeb, and Z. Iqbal (2019). Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int. J. Pharm. 560, 78–91. https://doi.org/10.1016/j.ijpharm.2019.01.067.

    Article  CAS  PubMed  Google Scholar 

  33. S. Uprit, R. Kumar Sahu, A. Roy, and A. Pare (2013). Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm. J. 21, 379–385. https://doi.org/10.1016/j.jsps.2012.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  34. R. Hamed, A. Farhan, R. Abu-Huwaij, N. N. Mahmoud, and A. Kamal (2020). Lidocaine microemulsion-laden organogels as lipid-based systems for topical delivery. J. Pharm. Innov. 15, 521–534. https://doi.org/10.1007/s12247-019-09399-z.

    Article  Google Scholar 

  35. P. Negi, B. Singh, G. Sharma, S. Beg, and O. P. Katare (2015). Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: QbD-based optimisation, dermatokinetics and in vivo evaluation. J. Microencapsul. 32, 419–431. https://doi.org/10.3109/02652048.2015.1046513.

    Article  CAS  PubMed  Google Scholar 

  36. K. Raza, B. Singh, S. Lohan, G. Sharma, P. Negi, Y. Yachha, and O. P. Katare (2013). Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int. J. Pharm. 456, 65–72. https://doi.org/10.1016/j.ijpharm.2013.08.019.

    Article  CAS  PubMed  Google Scholar 

  37. D. K. Gupta, M. Aqil, A. Ahad, S. S. Imam, A. Waheed, A. Qadir, M. K. Iqubal, and Y. Sultana (2020). Tailoring of berberine loaded transniosomes for the management of skin cancer in mice. J. Drug Deliv. Sci. Technol. 60, 102051. https://doi.org/10.1016/j.jddst.2020.102051.

    Article  CAS  Google Scholar 

  38. Ç. Tas, Y. Özkan, A. Savaser, and T. Baykara (2003). In vitro release studies of chlorpheniramine maleate from gels prepared by different cellulose derivatives. Il Farmaco 58, 605–611. https://doi.org/10.1016/S0014-827X(03)00080-6.

    Article  CAS  PubMed  Google Scholar 

  39. F. I. Abd-Allah, H. M. Dawaba, and A. M. Ahmed (2010). Preparation, characterization, and stability studies of piroxicam-loaded microemulsions in topical formulations. Drug Discov. Ther. 4, 267–275.

    CAS  PubMed  Google Scholar 

  40. T. Z. da Silva Marques, R. Santos-Oliveira, L. B. de Oliveira de Siqueira, V. da Silva Cardoso, Z. M. F. de Freitas, R. de Cássiada S. A. Barros, A. L. V. Villa, M. S. de Satode B. Monteiro, E. P. Dos Santos, and E. Ricci-Junior (2018). Development and characterization of a nanoemulsion containing propranolol for topical delivery. Int. J. Nanomed. 13, 2827–2837. https://doi.org/10.2147/IJN.S164404.

    Article  Google Scholar 

  41. L. M. Negi, M. Jaggi, and S. Talegaonkar (2014). Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers. Int. J. Pharm. 461, 403–410. https://doi.org/10.1016/j.ijpharm.2013.12.006.

    Article  CAS  PubMed  Google Scholar 

  42. T. Muta, A. Parikh, K. Kathawala, H. Haidari, Y. Song, J. Thomas, and S. Garg (2020). Quality-by-design approach for the development of nano-sized tea tree oil formulation-impregnated biocompatible gel with antimicrobial properties. Pharmaceutics 12, 1–16. https://doi.org/10.3390/pharmaceutics12111091.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (G: 104-140-1442). The authors, therefore, acknowledge with thanks to DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadab Md.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asfour, H.Z., Alhakamy, N.A., Alam, M.S. et al. Design of Experiment Navigated Methodical Development of Neem Oil Nanoemulsion Containing Tea Tree Oil for Dual Effect Against Dermal Illness: Ex Vivo Dermatokinetic and In Vivo. J Clust Sci 34, 1311–1323 (2023). https://doi.org/10.1007/s10876-022-02301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02301-x

Keywords

Navigation