Skip to main content
Log in

Berberine Loaded Tragacanth-Acacia Gum Nanocomplexes: Synthesis, Characterization and Evaluation of In Vitro Anti-inflammatory and Antioxidant Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study focused on the synthesis and characterization of natural gum-based nanocarrier for the hydrophobic drug, berberine, using acacia and tragacanth gum to improve its antioxidant and anti-inflammatory activity. Berberine loaded tragacanth-acacia gum nanocomplexes were prepared by ionic complexation method and central composite experimental design was applied to optimize nanocomplexes for appropriate particle size and efficient entrapment. The developed nanocomplexes were characterized by dynamic light scattering, Fourier transform-infrared spectroscopy and Transmission electron microscopy. The prepared berberine formulation was assessed for in vitro drug release study, anti-inflammatory and antioxidant activity. The optimized berberine loaded tragacanth-acacia gum nanocomplexes had a particle size of 238.1 nm and entrapment efficiency of 94.8%. TEM observations illustrated spherically shaped nanocomplexes with size in the range of 110–235 nm. Moreover, berberine loaded tragacanth-acacia gum nanocomplexes have controlled released property in vitro and showed enhanced antioxidant and anti-inflammatory potential as indicated by relatively high percentage of scavenging effect (DPPH assay) and Human Red Blood Cell (HRBC) membrane protection over berberine. In conclusion, the ameliorated biological potential of berberine upon encapsulation into gum nanocomplexes indicates that synthesized nanocomplexes can be utilized as an efficient carrier for improving the biological potential of the drug with significant applications in pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study will be available on request from the corresponding author.

References

  1. J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. P. Rodriguez-Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R. Grillo, M. K. Swamy, S. Sharma, S. Habtemariam, and H. S. Shin (2018). J. Nanobiotechnol. 16, 71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  Google Scholar 

  2. P. M. Cheuka, G. Mayoka, P. Mutai, and K. Chibale (2017). Molecules 22, 58. https://doi.org/10.3390/molecules22010058.

    Article  CAS  Google Scholar 

  3. P. R. Vuddanda, S. Chakraborty, and S. Singh (2010). Exp. Opin. Investig. 19, 1297. https://doi.org/10.1517/13543784.2010.517745.

    Article  CAS  Google Scholar 

  4. Z. Wang, Z. Chen, S. Yang, Y. Wang, Z. Huang, J. Gao, S. Tu, and Z. Rao (2014). Inflammation 37, 1789. https://doi.org/10.1007/s10753-014-9909-y.

    Article  CAS  PubMed  Google Scholar 

  5. A. Shirwaikar, A. Shirwaiker, K. Rajendran, and I. S. R. Punitha (2006). Biol. Pharm. Bull. 29, 1906. https://doi.org/10.1248/bpb.29.1906.

    Article  CAS  PubMed  Google Scholar 

  6. S. K. Kulkarni and A. Dhir (2008). Eur. J. Pharmacol. 589, 163. https://doi.org/10.1016/j.ejphar.2008.05.043.

    Article  CAS  PubMed  Google Scholar 

  7. Z. Q. Li, D. Y. Zuo, X. D. Qie, H. Qi, M. Q. Zhao, and Y. L. Wu (2012). J. Ethnopharmacol. 142, 474. https://doi.org/10.1016/j.jep.2012.05.022.

    Article  CAS  PubMed  Google Scholar 

  8. M. J. Iqbal, C. Quispe, Z. Javed, H. Sadia, Q. R. Qadri, S. Raza, B. Salehi, N. Cruz-Martins, Z. A. Mohamed, M. S. Jaafaru, A. F. A. Razis, and J. Sharifi-Rad (2020). Front Mol Biosci. https://doi.org/10.3389/fmolb.2020.624494.

    Article  Google Scholar 

  9. W. Chen, Y. Q. Miao, D. J. Fan, S. S. Yang, X. Lin, L. K. Meng, and X. Tang (2011). AAPS PharmSci. Tech. 12, 705. https://doi.org/10.1208/s12249-011-9632-z.

    Article  CAS  Google Scholar 

  10. M. U. K. Sahibzada, A. Sadiq, H. S. Faidah, M. Khurram, M. U. Amin, A. Haseeb, and M. Kakar (2018). Drug Des. Dev. Ther. 12, 303. https://doi.org/10.2147/DDDT.S156123.

    Article  CAS  Google Scholar 

  11. Y. Zhou, S. Q. Liu, H. Peng, L. Yu, B. He, and Q. Zhao (2015). Int Immunopharmacol. 28, 34. https://doi.org/10.1016/j.intimp.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  12. S. R. Saleh, M. M. Abady, Md. Nofal, N. W. Yassa, M. S. Abdel-Latif, M. I. Nounou, D. A. Ghareeb, and N. Abdel-Monaem (2021). Curr. Clin. Pharmacol. 16, 139. https://doi.org/10.2174/1574884715666200628112844.

    Article  CAS  Google Scholar 

  13. B. S. Lele and A. S. Hoffman (2000). J. Biomater. Sci. Polym. Ed. 11, 1319. https://doi.org/10.1163/156856200744354.

    Article  CAS  PubMed  Google Scholar 

  14. J. Jin, M. Xu, Y. Liu, Z. Ji, K. Dai, L. Zhang, L. Wang, F. Ye, G. Chen, and Z. Lv (2020). Colloids Surf B. 194, 111168. https://doi.org/10.1016/j.colsurfb.2020.111168.

    Article  CAS  Google Scholar 

  15. L. Zhao, X. Du, J. Tian, X. Kang, Y. Li, W. Dai, D. Li, S. Zhang, and C. Li (2021). Front. Pharmacol. 12, 644387. https://doi.org/10.3389/fphar.2021.644387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Khemani, M. Sharon, and M. Sharon (2012). ISRN Nanotechnol. 1, 187354. https://doi.org/10.5402/2012/187354.

    Article  CAS  Google Scholar 

  17. Y. H. Lin, J. H. Lin, S. C. Chou, S. J. Chang, C. C. Chung, Y. S. Chen, and C. H. Chang (2015). Nanomedicine 10, 57. https://doi.org/10.2217/nnm.14.76.

    Article  CAS  PubMed  Google Scholar 

  18. M. J. Al-Awady, A. Fauchet, G. M. Greenway, and V. N. Paunov (2017). J. Mater. Chem B. 38, 1775. https://doi.org/10.1039/c7tb02262j.

    Article  CAS  Google Scholar 

  19. S. Dash, M. Kumar, and N. Pareek (2020). Mater. Today: Proc. 31, 506. https://doi.org/10.1016/j.matpr.2020.05.506.

    Article  CAS  Google Scholar 

  20. N. Stoyanova, M. Ignatova, N. Manolova, I. Rashkov, R. Toshkova, and A. Georgieva (2020). Int J Pharm. https://doi.org/10.1016/j.ijpharm.2020.119426.

    Article  PubMed  Google Scholar 

  21. A. Taheri and S. M. Jafari (2019). Adv. Colloid Interface. Sci. 269, 277. https://doi.org/10.1016/j.cis.2019.04.009.

    Article  CAS  PubMed  Google Scholar 

  22. S. Balaghi, M. A. Mohammadifar, A. Zargaraan, H. A. Gavlighi, and M. Mohammadi (2011). Food Hydrocoll. 25, 1775. https://doi.org/10.1016/j.foodhyd.2011.04.003.

    Article  CAS  Google Scholar 

  23. A. Vojdani and C. Vojdani (2015). Altern. Ther. Health Med. 2 (supp 1), 64.

    Google Scholar 

  24. B. Singh, K. Sharma, Rajneesh, and S. Dutt (2020). Bioact. Carbohydr. Diet. Fibre 21, 100208. https://doi.org/10.1016/j.bcdf.2019.100208.

    Article  CAS  Google Scholar 

  25. S. Cikrikci, B. Mert, and M. H. Oztop (2018). J. Agric. Food Chem. 66, 11784. https://doi.org/10.1021/acs.jafc.8b02525.

    Article  CAS  PubMed  Google Scholar 

  26. A. I. Foudah, M. H. Alqarni, G. A. Soliman, R. F. Abdel-Rahman, O. Alankus-Calıskan, M. A. Ganaie, and H. Yusufoglu (2020). J. Pharm. Res. Int. 32, 102.

    Article  Google Scholar 

  27. Kashmir observer. Health benefits of Tragacanth gum (Kateer). https://kashmirobserver.net/. Accessed 21 May 2019

  28. E. Dauqan and A. Abdullah (2013). Am. J. Appl. Sci. 10, 1270. https://doi.org/10.3844/ajassp.2013.1270.1279.

    Article  Google Scholar 

  29. M. R. L. Lamsen, T. Wang, D. D’Souza, V. Dia, G. Chen, and Q. Zhong (2020). J. Food Sci. 85, 2368. https://doi.org/10.1111/1750-3841.15340.

    Article  CAS  PubMed  Google Scholar 

  30. M. E. S. Mirghani, A. A. M. Elnour, N. A. Kabbashi, M. Z. Alam, K. H. Musa, and A. Abdullah (2018). Sci. Asia. 44, 179. https://doi.org/10.2306/scienceasia1513-1874.2018.44.179.

    Article  CAS  Google Scholar 

  31. B. H. Ali, I. Al-Husseni, S. Beegam, A. Al-Shukaili, A. Nemmar, S. Schierling, N. Queisser, and N. Schupp (2013). PLoS ONE 8, 55242. https://doi.org/10.1371/journal.pone.0055242.

    Article  CAS  Google Scholar 

  32. A. Hassani, S. Mahmood, H. H. Enezei, S. A. Hussain, H. A. Hamad, A. F. Aldoghachi, A. Hagar, A. A. Doolaanea, and W. N. Ibrahim (2020). Molecules 25, 2244. https://doi.org/10.3390/molecules25092244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. C. Tan, J. Xie, X. Zhang, J. Cai, and S. Xia (2016). Food Hydrocoll. 57, 236. https://doi.org/10.1016/j.foodhyd.2016.01.021.

    Article  CAS  Google Scholar 

  34. H. Kaur, M. Ahuja, S. Kumar, and N. Dilbaghi (2012). Int. J. Biol. Macromol. 50, 833. https://doi.org/10.1016/j.ijbiomac.2011.11.017.

    Article  CAS  PubMed  Google Scholar 

  35. A. Bag, S. K. Bhattacharyya, N. K. Pal, and R. R. Chattopadhyay (2013). Pharm. Biol. 51, 1515. https://doi.org/10.3109/13880209.2013.799709.

    Article  CAS  PubMed  Google Scholar 

  36. Z. Cheng, J. Moore, and L. Yu (2016). J. Agric. Food Chem. 54, 7429. https://doi.org/10.1021/jf0611668.

    Article  CAS  Google Scholar 

  37. W. E. Hennink and C. F. Nostrum (2002). Adv. Drug Deliv. Rev. 54, 13. https://doi.org/10.1016/s0169-409x(01)00240-x.

    Article  CAS  PubMed  Google Scholar 

  38. S. S. Rithe, P. G. Kadam, and S. T. Mhaske (2014). Adv. Mater. Sci. Eng. Int J. 1, 2.

    Google Scholar 

  39. A. V. Fernandes, C. R. Pydi, R. Verma, J. Jose, and L. Kumar (2020). Braz. J. Pharm. Sci. 56, 18069.

    Article  Google Scholar 

  40. M. Chopra, M. Bernela, P. Kaur, A. Manuja, B. Kumar, and R. Thakur (2015). Int. J. Biol. Macromol. 72, 827. https://doi.org/10.1016/j.ijbiomac.2014.09.037.

    Article  CAS  PubMed  Google Scholar 

  41. F. Baghbani, F. Moztarzadeh, J. A. Mohandesi, F. Yazdian, M. Mokhtari-Dizaji, and S. Hamedi (2016). Int. J. Biol. Macromol. 89, 550. https://doi.org/10.1016/j.ijbiomac.2016.05.033.

    Article  CAS  PubMed  Google Scholar 

  42. M. L. T. Zweers, D. W. Grijpma, G. H. Engbers, and J. Feijen (2003). J. Biomed. Mater. Res. B Appl. Biomater. 66, 559. https://doi.org/10.1002/jbm.b.10046.

    Article  CAS  PubMed  Google Scholar 

  43. N. Dilbaghi, H. Kaur, M. Ahuja, and S. Kumar (2013). J. Nanoeng. Nanomanuf. 3, 147. https://doi.org/10.1166/jnan.2013.1121.

    Article  CAS  Google Scholar 

  44. S. K. Battu, M. A. Repka, S. Maddineni, A. G. Chittiboyina, M. A. Avery, and S. Majumdar (2010). AAPS Pharm. Sci. Tech. 11, 1466. https://doi.org/10.1208/s12249-010-9520-y.

    Article  CAS  Google Scholar 

  45. A. Kurt (2018). Food and Health. 4, 183. https://doi.org/10.3153/fh18019.

    Article  Google Scholar 

  46. P. K. Patel and S. S. Pandya (2013). Res. Rev. J. Pharm Pharm. Sci. 2, 40.

    Google Scholar 

  47. P. Kundu, M. Das, K. Tripathy, and S. K. Sahoo (2016). ACS Chem. Neurosci. 7, 1658. https://doi.org/10.1021/acschemneuro.6b00207.

    Article  CAS  PubMed  Google Scholar 

  48. R. Kapoor, S. Singh, M. Tripathi, P. Bhatnagar, P. Kakkar, and K. C. Gupta (2014). PLoS ONE 9, 89124. https://doi.org/10.1371/journal.pone.0089124.

    Article  CAS  Google Scholar 

  49. R. Gouda, H. Baishya, and Z. Qing (2017). J. Dev. Drugs. 6, 100171. https://doi.org/10.4172/2329-6631.1000171.

    Article  CAS  Google Scholar 

  50. T. X. Nguyen, L. Huang, L. Liu, A. M. E. Abdalla, M. Gauthier, and G. Yang (2014). J Mater Chem B. https://doi.org/10.1039/c0xx00000x.

    Article  PubMed  PubMed Central  Google Scholar 

  51. H. D. Jhundoo, T. Siefen, A. Liang, C. Schmidt, J. Lokhnauth, B. Moulari, A. Beduneau, Y. Pellequer, C. C. Larsen, and A. Lamprecht (2021). Int. J. Pharm. X 3, 100080. https://doi.org/10.1016/j.ijpx.2021.100080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. K. Sridhar and A. L. Charles (2018). Food Chem. https://doi.org/10.1016/j.foodchem.2018.09.040.

    Article  PubMed  Google Scholar 

  53. K. Siribiulkovit, S. Nouanthavong, and Y. Sameenoi (2018). Anal Sci. 34, 795. https://doi.org/10.2116/analsci.18p014.

    Article  Google Scholar 

  54. E. S. Kim, D. Y. Kim, J. S. Le, and H. G. Lee (2019). J. Agric. Food Chem. 67, 8609. https://doi.org/10.1021/acs.jafc.9b00008.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Jyoti Bakshi acknowledges financial support in the form of University Research Fellowship by Guru Jambheshwar University Science & Technology, (Hisar) and Sophisticated Analytical Instrumentation Facility (SAIF), AIIMS, New Delhi for providing the facilities for carrying out this research work.

Funding

This research was funded by Guru Jambheshwar University Science & Technology, Hisar (Haryana, India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumari.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakshi, J., Mehra, M., Grewal, S. et al. Berberine Loaded Tragacanth-Acacia Gum Nanocomplexes: Synthesis, Characterization and Evaluation of In Vitro Anti-inflammatory and Antioxidant Activity. J Clust Sci 34, 747–760 (2023). https://doi.org/10.1007/s10876-022-02252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02252-3

Keywords

Navigation