Skip to main content

Advertisement

Log in

Smart Peptide/Au Nano-carriers for Drug Delivery Systems: Synthesis and Characterization, Interactions with Calf Thymus DNA, and In Vitro Cytotoxicity Studies

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Peptides are reducing and capping agents that can be used for the synthesis of biocompatible metal nanoparticles under relatively mild conditions. However, the abundance of random and inactive amino acid sequences in peptides, the lack of peptide design rules have led to their studies being slow and make it difficult to use them. In this study, calcitonin-capped Au nanoparticles were synthesized by a simple and controlled method. The aim of this study was to determine the cytotoxicity of calcitonin-capped Au nanoparticles on the human breast cancer cells (MCF-7) and osteoblast cell lines (G292). The absorbance of calcitonin-capped Au nanoparticles is higher than bare AuNPs. FTIR analysis revealed that amino acides of present in calcitonin played dual roles as reducing and stabilizing agents during synthesis of AuNPs. TEM image analysis showed formation of predominantly spherical calcitonin-capped Au nanoparticles with mean particle diameter of about 2–20 nm. The interactions between the calcitonin-capped Au nanoparticles and calf thymus DNA in aqueous was studied by circular dichroism (CD), UV–Vis and fluorescence spectroscopy. The results indicated that the synthesized calcitonin-capped Au nanoparticles can successfully insert into calf thymus DNA. [L]1/2, concentrations of calcitonin-capped Au nanoparticles in the midpoint of transition, 0.32085 mM and o.28744 mM and the apparent binding constant (K × 104(M)−1), 79.52 and 81.04 were obtained at 300 and 310 K, respectively. The cytotoxicity of the prepared calcitonin-capped Au nanoparticles was measured on the human breast cancer cells (MCF-7) and osteoblast cell lines (G292) by cell viability (MTT assay) and apoptosis (TUNEL assay: Terminal deoxynucleotidyl transferase dUTP nick end labeling). According to the MTT assay, the CC50 values of calcitonin-capped Au nanoparticles and cisplatin are 12.7 μM and 8.3 μM, respectively in G292 which are very near to each other compared on MCF-7. Therefore, TUNEL assay was done on G292 cell lines. The results showed that apoptosis was obviously observable by 48% DNA fragmentation on G292 cell lines. Therefore, the calcitonin-capped Au nanoparticles are suitable drugs which have strong potential in DNA denaturation and apoptosis especially on osteoblast cell lines (G292).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. Ahmadian-Fard-Fini, D. Ghanbari, O. Amiri, and M. Salavati-Niasari (2020). Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydr. Polym. 229, 115428.

    Article  CAS  PubMed  Google Scholar 

  2. S. Ahmadian-Fard-Fini, D. Ghanbari, and M. Salavati-Niasari (2019). Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Compos. Part B 161, 564–577.

    Article  CAS  Google Scholar 

  3. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, and D. Ghanbari (2018). Hydrothermal green synthesis of magnetic Fe3O4–carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim Acta A 203, 481–493.

    Article  CAS  Google Scholar 

  4. M. Yoshida and J. Lahann (2008). Smart nanomaterials. ACS Nano. 2, 1101–1107.

    Article  CAS  PubMed  Google Scholar 

  5. T. M. Allen and P. R. Cullis (2004). Drug delivery systems: entering the mainstream. Science. 303, 1818–1822.

    Article  CAS  PubMed  Google Scholar 

  6. B. K. Lee, Y. H. Yun, and K. Park (2015). Smart nanoparticles for drug delivery: boundaries and opportunities. Chem. Eng. Sci. 125, 158–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Liu, F. Yang, F. Xiong, and N. Gu (2016). The smart drug delivery system and its clinical potential. Theranostics. 6, 1306–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, and R. Langer (2007). Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751–760.

    Article  CAS  PubMed  Google Scholar 

  9. E. S. Kawasaki and A. Player (2005). Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed. Drug Deliv. 1, 101–109.

    CAS  Google Scholar 

  10. B. Aslan, B. Ozpolat, A. K. Sood, and G. Lopez-Berestein (2013). Nanotechnology in cancer therapy. J. Drug Targeting. 21, 904–913.

    Article  CAS  Google Scholar 

  11. X. Yu, I. Trase, M. Ren, K. Duval, X. Guo, and Z. Chen. (2016) Design of nanoparticle-based carriers for targeted drug delivery. J. Nanomater.

  12. J. Yin, Y. Chen, Z. H. Zhang, and X. Han (2016). Stimuli-responsive block copolymer-based assemblies for cargo delivery and theranostic applications. Polymers. 8, 268–315.

    Article  PubMed  PubMed Central  Google Scholar 

  13. E. L. Siegler, Y. J. Kim, and P. Wang (2016). Nanomedicine targeting the tumor microenvironment: therapeutic strategies to inhibit angiogenesis, remodel matrix, and modulate immune responses. J. Cell. Immunother. 2, 69–78.

    Article  Google Scholar 

  14. M. Werner, T. Auth, P.A. Beales (2018) Nanomaterial interactions with biomembranes: bridging the gap between soft matter models and biological context. Biointerphases 13

  15. P. Ghosh, G. Han, M. De, C. Kim, and V. Rotello (2008). Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315.

    Article  CAS  PubMed  Google Scholar 

  16. F.Y. Kong, J. W. Zhang, R.F. Li, Z.X. Wang, W.J. Wang, W. Wang (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22

  17. T. V. Verissimo, N. T. Santos, J. R. Silva, R. B. Azevedo, A. J. Gomes, and C. N. Lunardi (2016). In vitro cytotoxicity and photo toxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater. Sci. Eng. C 65, 199–204.

    Article  CAS  Google Scholar 

  18. K. Sreejivungsa, N. Suchaichit, P. Moosophon, and A. Chompoosor (2016). Light-regulated release of entrapped drugs from photoresponsive gold nanoparticles. J. Nanomater.. Article ID 4964693, 1–7.

    Google Scholar 

  19. E. Maltas, S. Malkondu, P. Uyar, and M. Ozmen (2015). Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging. Mater. Sci. Eng. C 48, 86–93.

    Article  CAS  Google Scholar 

  20. Y. Zhai, Y. Zhang, F. Qin, and X. Yao (2015). An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens. Bioelectron. 70, 130–136.

    Article  CAS  PubMed  Google Scholar 

  21. T. J. Daou, L. Li, P. Reiss, V. Josserand, and I. Texier (2009). Effect of poly (ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir. 25, 3040–3044.

    Article  CAS  PubMed  Google Scholar 

  22. E. B. Voura, J. K. Jaiswal, H. Mattoussi, and S. M. Simon (2004). Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10, 993–998.

    Article  CAS  PubMed  Google Scholar 

  23. A. Kumar (2013). Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale. 5, 8307–8325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. Ding, A. Zhu, and Y. Tian (2014). Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20–30.

    Article  CAS  PubMed  Google Scholar 

  25. D. E. Cliffel, F. P. Zamborini, S. M. Gross, and R. W. Murray (2000). Silver, and palladium clusters. Langmuir. 16, 9699–9702.

    Article  CAS  Google Scholar 

  26. S. Mann, B.R. Heywood, S. Rajam, and V.J. Wade (1991) Molecular recognition in biomineralization. In Mechanisms and Phylogeny of Mineralization in Biological Systems. Springer, Tokyo, pp. 47−55

  27. G. Zan and Q. Wu (2016). Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 28, 2099–2147.

    Article  CAS  PubMed  Google Scholar 

  28. B. D. Briggs, Y. Li, M. T. Swihart, and M. R. Knecht (2015). Reductant and sequence effects on the morphology and catalytic activity of peptide capped Au nanoparticles. ACS Appl. Mater. Interfaces 7, 8843–8851.

    Article  CAS  PubMed  Google Scholar 

  29. W. Yang, W. Guo, J. Chang, and B. Zhang (2017). Protein/peptide templated biomimetic synthesis of inorganic nanoparticles for biomedical applications. J. Mater. Chem. B 5, 401–417.

    Article  CAS  PubMed  Google Scholar 

  30. H. Duan, D. Wang, and Y. Li (2015). Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 44, 5778–5792.

    Article  CAS  PubMed  Google Scholar 

  31. J. M. Patete, X. Peng, C. Koenigsmann, Y. Xu, B. Karn, and S. S. Wong (2011). Viable methodologies for the synthesis of high-quality nanostructures. Green Chem. 13, 482–519.

    Article  CAS  Google Scholar 

  32. S. Zhang (2003). Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  33. C. L. Chen and N. L. Rosi (2010). Peptide-based methods for the preparation of nanostructured inorganic materials. Angew. Chem. Int. Ed. 49, 1924–1942.

    Article  CAS  Google Scholar 

  34. N. M. Bedford, Z. E. Hughes, Z. Tang, Y. Li, B. D. Briggs, Y. Ren, M. T. Swihart, V. G. Petkov, R. R. Naik, M. R. Knecht, and T. R. Walsh (2016). Sequence-dependent structure/function relationships of catalytic peptide-enabled gold nanoparticles generated under ambient synthetic conditions. J. Am. Chem. Soc. 138, 540–548.

    Article  CAS  PubMed  Google Scholar 

  35. S. Deshayes, M. Morris, F. Heitz, and G. Divita (2008). Delivery of proteins and nucleic acids using a non-covalent peptide-based strategy. Adv. Drug Deli. Rev. 60, 537–547.

    Article  CAS  Google Scholar 

  36. M. Arsianti, M. Lim, C. P. Marquis, and R. Amal (2010). Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir. 26, 7314–7326.

    Article  CAS  PubMed  Google Scholar 

  37. S. Guo, Y. Huang, Q. Jiang, Y. Sun, L. Deng, Z. Liang, Q. Du, J. Xing, Y. Zhao, P. C. Wang, A. Dong, and X. J. Liang (2010). Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano 4, 5505–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. L. West and N. J. Halas (2000). Applications of nanotechnology to biotechnology: commentary. Curr. Opin. Biotechnol. 11, 215–217.

    Article  CAS  PubMed  Google Scholar 

  39. M. Tsoli, H. Kuhn, W. Brandau, H. Esche, and G. Schmid (2005). Cellular uptake and toxicity of Au55 clusters. Small 1, 841–844.

    Article  CAS  PubMed  Google Scholar 

  40. W. Wang, Q. Wei, J. Wang, B. Wang, S. Zhang, and Z. Yuan (2013). Role of thiol-containing polyethylene glycol (thiol-PEG) in the modification process of gold nanoparticles (AuNPs): stabilizer or coagulant. J. Colloid Interface Sci. 404, 223–229.

    Article  CAS  PubMed  Google Scholar 

  41. R. Levy (2006). Peptide-capped gold nanoparticles: towards artificial proteins. Chem. Eur. 7, 1141–1145.

    CAS  Google Scholar 

  42. Z. Wang, R. Levy, D. G. Fernig, and M. Brust (2006). Kinase-catalyzed modification of gold nanoparticles: a new approach to colorimetric kinase activity screening. J. Am. Chem. Soc. 128, 2214–2215.

    Article  CAS  PubMed  Google Scholar 

  43. S. P. A. Toledo, D. M. Lourenço, M. A. Santos, M. R. Tavares, R. A. Toledo, and J. E. De Menezes Correia-Deur (2009). Hyper-calcitoninemia is not pathognomonic of medullary thyroid carcinoma. Clinics 64, 699–706.

    Article  PubMed  PubMed Central  Google Scholar 

  44. P. Trimboli, L. Guidobaldi, M. Bongiovanni, A. Crescenzi, M. Alevizaki, and L. Giovanella (2016). Use of fine-needle aspirate calcitonin todetect medullary thyroid carcinoma: a systematic review. Diagn. Cytopathol. 44, 45–51.

    Article  PubMed  Google Scholar 

  45. M. D’Hondt, D. M. Van, B. Mehuys, D. Deforce, and B. DeSpiegeleer (2010). Quality analysis of salmon calcitonin in a polymericbioadhesive pharmaceutical formulation: sample preparation opti-mization by DOE. J. Pharm. Biomed. Anal. 53, 939–945.

    Article  PubMed  Google Scholar 

  46. M. Eslami Moghadam, M. Saidifar, A. Divsalar, H. Mansouri-Torshizi, A. A. Saboury, H. Farhangian, and M. Ghadamgahi (2016). Rich spectroscopic and molecular dynamic studies on the interaction of cytotoxic Pt (II) and Pd (II) complexes of glycine derivatives with calf thymus DNA. J. Biomol. Struct. Dyn. 34, 206–222.

    Article  CAS  PubMed  Google Scholar 

  47. H. Mansouri-Torshizi, E. Rezaei, F. Kamranfar, and M. H. Majd (2016). Investigating the apoptosis ability of ethylenediamine 8-hydroxyquinolinato palladium (II) complex. Adv. Pharm. Bull. 6, 449–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Heidari Majd, A. Akbarzadeh, and A. Sargazi (2017). Evaluation of host–guest system to enhance the tamoxifen efficiency. Artif. Cells Nanomed. Biotechnol. 45, 441–447.

    Article  CAS  PubMed  Google Scholar 

  49. A. Sargazi, K. Kuhestani, T. Nosrat Nahoki, and M. Heidari Majd (2015). Specific targeting of folate receptor by methotrexate conjugated modified magnetic nanoparticles: enzymatic release and cytotoxic study. Int. Jo. Pharm. Sci. Res. 6, 5047–5055.

    CAS  Google Scholar 

  50. K. Lance Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668.

    Article  Google Scholar 

  51. J. Won, K. J. Ihn, and Y. S. Kang (2002). Gold nanoparticle patterns on polymer films in the presence of poly (amidoamine) dendrimers. Langmuir. 18, 8246–8254.

    Article  CAS  Google Scholar 

  52. B. Nikoobakht and M. A. El-Sayed (2003). Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1963.

    Article  CAS  Google Scholar 

  53. M. K. Cobierre, N. S. Cameron, and R. B. Lennox (2004). Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir. 20, 2867–2878.

    Article  Google Scholar 

  54. M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray (1998). Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14, 17–26.

    Article  CAS  Google Scholar 

  55. R. West, Y. Wang, and T. Goodson (2003). Nonlinear absorption properties in novel gold nanostructured topologies. J. Phys. Chem. B 107, 3419–3431.

    Article  CAS  Google Scholar 

  56. S. K. Ghosh and T. Pal (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862.

    Article  CAS  PubMed  Google Scholar 

  57. S. Aryal, B. K. Remant, N. Dharmaraj, N. Bhattarai, C. H. Kim, and H. Y. Kim (2006). Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J. Colloid Interface Sci. 299, 191–197.

    Article  CAS  PubMed  Google Scholar 

  58. P. Zhang, J. Li, D. Liu, Y. Qin, Z. X. Guo, and D. Zhu (2004). Self-assembly of gold nanoparticles on fullerene nanospheres. Langmuir. 20, 1466–1479.

    Article  CAS  PubMed  Google Scholar 

  59. Z. Sorinezami, H. Mansouri-Torshizi, M. Aminzadeh, A. Ghahghaei, N. Jamgohari, and M. Heidari Majd (2017). Synthesis of new ultrasonic-assisted palladium oxide nanoparticles: an in vitro evaluation on cytotoxicity and DNA/BSA binding properties. J. Biomol. Struct. Dyn. 37, 4238–4250.

    Article  Google Scholar 

  60. Z. Sorinezami, H. Mansouri-Torshizi, and B. Ghanbari (2017). Synthesis of PdO nanoparticles: crystal structure, DNA binding, and cytotoxicity of a new hydroxyl-quinolinato-palladium complex. Inorg. Nano-Metal Chem. 47, 500–508.

    Article  CAS  Google Scholar 

  61. A. V. Hill (1910). The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, 4–7.

    Google Scholar 

  62. S. Shahraki, F. Shiri, M. H. Majd, and Z. Razmara (2017). Comparative study on the anticancer activities and binding properties of a hetero metal binuclear complex [Co(dipic)2 Ni(OH2) 5]·2H2O (dipic=dipicolinate) with two carrier proteins. J. Pharm. Biomed. Anal. 145, 273–282.

    Article  CAS  PubMed  Google Scholar 

  63. S. Shahraki, H. Mansouri-Torshizi, Z. S. Nezami, A. Ghahghaei, F. Yaghoubi, A. Divsalar, and F. H. Shirazi (2014). The effects of extending of co-planarity in a series of structurally relative polypyridyl Palladium (II) complexes on DNA-binding and cytotoxicity properties. Iran. J. Pharm. Res. 13, 1279–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. G. Scatchard (1949). The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672.

    Article  CAS  Google Scholar 

  65. Z. Sorinezami and H. Mansouri-Torshizi (2016). Photo-catalytic degradation of organic dyes: ultrasonic-assisted synthesis of PdO nanoparticles. J. Mater. Sci. 27, 1558–1565.

    CAS  Google Scholar 

  66. M. Howe-Grant, K. C. Wu, W. R. Bauer, and S. J. Lippard (1976). Binding of platinum and palladium metallointercalation reagents and antitumor drugs to closed and open DNAs. Biochemistry 15, 4339–4346.

    Article  CAS  PubMed  Google Scholar 

  67. G. Zhang, Y. Ma, L. Wang, Y. Zhang, and J. Zhou (2012). Multi spectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin. Food Chem. 133, 264–270.

    Article  CAS  PubMed  Google Scholar 

  68. E. Ramachandran, D. S. Raja, N. S. Bhuvanesh, and K. Natarajan (2013). Synthesis, characterization and in vitro pharmacological evaluation of new water soluble Ni(II) complexes of 4N-substituted thiosemicarbazones of 2-oxo-1,2-dihydroquinoline-3-carbaldehyde. Eur. J. Med. Chem. 64, 179–189.

    Article  CAS  PubMed  Google Scholar 

  69. F. L. Cui, J. Fan, D. L. Ma, M. C. Liu, X. G. Chen, and Z. D. Hu (2003). A study of the interaction between a new reagent and serum albumin by fluorescence spectroscopy. Anal. Lett. 36, 2151–2166.

    Article  CAS  Google Scholar 

  70. M. T. Behnamfar, H. Hadadzadeh, J. Simpson, F. Darabi, A. Shahpiri, T. Khayamian, and M. Salimi (2015). Experimental and molecular modeling studies of the interaction of the polypyridyl Fe (II) and Fe (III) complexes with DNA and BSA. Spectrochim. Acta A 134, 502–516.

    Article  CAS  Google Scholar 

  71. H. Khan, A. Badshah, G. Murtaz, M. Said, Zu. Rehman, C. Neuhausen, and I. S. Butler (2011). Synthesis, characterization and anticancer studies of mixed ligand dithiocarbamate palladium (II) complexes. Eur. J. Med. Chem. 46, 4071–4077.

    Article  CAS  PubMed  Google Scholar 

  72. S. J. Yang, M. C. Liu, H. M. Xiang, Q. Zhao, W. Xue, and S. Yang (2015). Synthesis and in vitro antitumor evaluation of betulin acid ester derivatives as novel apoptosis inducers. Eur. J. Med. Chem. 102, 249–255.

    Article  CAS  PubMed  Google Scholar 

  73. E. Ulukaya, F. M. Frame, B. Cevatemre, D. Pellacani, H. Walker, V. M. Mann, and N. J. Maitland (2013). Differential cytotoxic activity of a novel palladium-based compound on prostate cell lines, primary prostate epithelial cells and prostate stem cells. PLOS ONE. 8, 1–13.

    Article  Google Scholar 

  74. Z.M.J. Martinez, F.M. Roqué, C. Elena, R. Yuani, C. P. Alonso (2006) Calcitonin for metastatic bone pain. https://doi.org/10.1002/14651858.CD003223.pub2.

  75. J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir (2011). Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728.

    Article  CAS  PubMed  Google Scholar 

  76. A. Sun, J. Deng, G. Guan, S. Chen, Y. Liu, J. Cheng, Z. Li, X. Zhuang, F. Sun, and H. Deng (2012). Dipeptidyl peptidase-IV is a potential molecular biomarker in diabetic kidney disease. Diabetes Vasc. Dis. Res. 9, 301–308.

    Article  Google Scholar 

  77. K. Omidfar and M. Daneshpour (2015). Advances in phage display technology for drug discovery. Expert Opin. Drug Discov. 10, 651–669.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the University of Zabol for funding this work (Research Grant No.: IR-UOZ-GR-5721 and No.: UOZ-GR-9517-5).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziba Sorinezami or Mansour Ghaffari Moghaddam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoodi, H., Sorinezami, Z., Moghaddam, M.G. et al. Smart Peptide/Au Nano-carriers for Drug Delivery Systems: Synthesis and Characterization, Interactions with Calf Thymus DNA, and In Vitro Cytotoxicity Studies. J Clust Sci 34, 451–465 (2023). https://doi.org/10.1007/s10876-022-02229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02229-2

Keywords

Navigation