Skip to main content

Advertisement

Log in

Surface Effect of Iron Oxide Nanoparticles on the Suppression of Oxidative Burst in Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Overproduction of reactive oxygen species (ROS) is an unwanted phenomenon, leading to cellular damages. The aim of this study was to investigate the ability of neat and surface-modified iron oxide nanoparticles (IONs) to eliminate ROS produced by immune cells. The employed coating included heparin (ION@Hep) or heparin and chitosan grafted with phenolic compounds famous for antioxidant properties, i.e., gallic acid (ION@Ch-G) or phloroglucinol (ION@CH-P). A total peroxyl radical-trapping potential assay showed that both types of the phenolic compounds-modified IONs exhibited superior radical scavenging activity over the neat and ION@Hep particles at 100 μg/mL. Up to ~ 75 μg/mL, the particles were non-toxic towards RAW 264.7 macrophages. Capability of the particles to limit ROS production was investigated in vitro on polymorphonuclear (PMN) cells isolated from human whole blood and expressed as an ability to reduce the oxidative burst in the stimulated cells, as well as a potential to increase the viability of bacteria cultivated with the PMN cells. The highest viability of bacteria was observed for the neat and ION@Ch-G, while the ION@Ch-G particles also the most effectively inhibited the oxidative burst. The results indicated that ROS scavenging depend on the presence of polymer and selection of phenols, enriching the IONs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, MŚ, upon reasonable request.

Code Availability

Not applicable.

References

  1. J. K. Patra, G. Das, L. F. Fraceto, E. V. R. Campos, M. del Pilar Rodriguez Torres, L. S. Acosta-Torres, L. A. Diaz-Torres, R. Grillo, M. K. Swamy, S. Sharma, S. Habtemariam, and H.-S. Shin (2018). J. Nanobiotechnol. 16, 71. https://doi.org/10.1186/s12951-018-0392-8.

    Article  CAS  Google Scholar 

  2. X. Han, K. Xu, O. Taratula, and K. Farsad (2019). Nanoscale 11, 799. https://doi.org/10.1039/C8NR07769J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. van Rijt and P. Habibovic (2017). J. R. Soc. Interface 14, 20170093. https://doi.org/10.1098/rsif.2017.0093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C.-Y. Zhao, R. Cheng, Z. Yang, and Z.-M. Tian (2018). Molecules 23, 826. https://doi.org/10.3390/molecules23040826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. V. F. Cardoso, A. Francesko, C. Ribeiro, M. Bañobre-López, P. Martins, and S. Lanceros-Mendez (2018). Adv. Healthc. Mater. 7, 1700845. https://doi.org/10.1002/adhm.201700845.

    Article  CAS  Google Scholar 

  6. J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, and O. Zitka (2017). Nanomaterials 7, 243. https://doi.org/10.3390/nano7090243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Lachowicz, W. Górka, A. Kmita, A. Bernasik, J. Żukrowski, W. Szczerba, M. Sikora, C. Kapusta, and S. Zapotoczny (2019). J. Mater. Chem. B 7, 2962–2973. https://doi.org/10.1039/C9TB00029A.

    Article  CAS  Google Scholar 

  8. L. Yang, L. Ma, J. Xin, A. Li, C. Sun, R. Wei, B. W. Ren, Z. Chen, H. Lin, and J. Gao (2017). Chem. Mater. 29, 3038–3047. https://doi.org/10.1021/acs.chemmater.7b00035.

    Article  CAS  Google Scholar 

  9. H. Zeng, J. Li, Z. L. Wang, J. P. Liu, and S. Sun (2004). Nano Lett. 4, 187–190. https://doi.org/10.1021/nl035004r.

    Article  CAS  Google Scholar 

  10. E. A. Kwizera, E. Chaffin, Y. Wang, and X. Huang (2017). RSC Adv. 7, 17137–17153. https://doi.org/10.1039/C7RA01224A.

    Article  CAS  PubMed  Google Scholar 

  11. S. M. Dadfar, K. Roemhild, N. I. Drude, S. von Stillfried, R. Knüchel, F. Kiessling, and T. Lammers (2019). Adv. Drug Deliv. Rev. 138, 302. https://doi.org/10.1016/j.addr.2019.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. L. Cortajarena, D. Ortega, S. M. Ocampo, A. Gonzalez-García, P. Couleaud, R. Miranda, C. Belda-Iniesta, and A. Ayuso-Sacido (2014). Nanomedicine 1, 1. https://doi.org/10.5772/58841.

    Article  Google Scholar 

  13. G. Jarockyte, E. Daugelaite, M. Stasys, U. Statkute, V. Poderys, T.-C. Tseng, S.-H. Hsu, V. Karabanovas, and R. Rotomskis (2016). Int. J. Mol. Sci. 17, 1193. https://doi.org/10.3390/ijms17081193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. Mathieu, Y. Coppel, M. Respaud, Q. T. Nguyen, S. Boutry, S. Laurent, D. Stanicki, C. Henoumont, F. Novio, J. Lorenzo, D. Motpeyó, and C. Amiens (2019). Molecules 24, 4629. https://doi.org/10.3390/molecules24244629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Y. Wu, Z. Lu, Y. Li, J. Yang, and X. Zhang (2020). Nanomaterials 10, 1441. https://doi.org/10.3390/nano10081441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. M. Armijo, S. J. Wawrzyniec, M. Kopciuch, Y. I. Brand, A. C. Rivera, N. J. Withers, N. C. Cook, D. L. Huber, T. C. Monson, H. Smyth, and M. Osiński (2020). J. Nanobiotechnol. 18, 35. https://doi.org/10.1186/s12951-020-0588-6.

    Article  CAS  Google Scholar 

  17. D. Zhao, S. Yu, B. Sun, S. Gao, S. Guo, and K. Zhao (2018). Polymers 10, 462. https://doi.org/10.3390/polym10040462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. A. Matica, F. L. Aachmann, A. Tøndervik, H. Sletta, and V. Ostage (2019). Int. J. Mol. Sci. 20, 5889. https://doi.org/10.3390/ijms20235889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. Liu, G. Pu, S. Liu, J. Kan, and C. Jin (2017). Carbohydr. Polym. 174, 999–1017. https://doi.org/10.1016/j.carbpol.2017.07.014.

    Article  CAS  PubMed  Google Scholar 

  20. C. A. Prauchner (2017). Burns 43, 471. https://doi.org/10.1016/j.burns.2016.09.023.

    Article  PubMed  Google Scholar 

  21. J. Roy, J. M. Galano, T. Durand, J. T. Le Guennec, and J. C. Lee (2017). FASEB J. 31, 3729–3745. https://doi.org/10.1096/fj.201700170R.

    Article  CAS  PubMed  Google Scholar 

  22. M. Świętek, Y.-C. Lu, R. Konefał, L. P. Ferreira, M. M. Cruz, Y.-H. Ma, and D. Horák (2019). Beilstein J. Nanotechnol. 10, 1073. https://doi.org/10.3762/bjnano.10.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. W. Kim, C.-Y. Suh, S.-W. Cho, K.-M. Roh, H. Kwon, K. Song, and I.-J. Shon (2012). Talanta 94, 348. https://doi.org/10.1016/j.talanta.2012.03.001.

    Article  CAS  PubMed  Google Scholar 

  24. M. A. Legodi and D. de Waal (2007). Dyes Pigm. 74, 161. https://doi.org/10.1016/j.dyepig.2006.01.038.

    Article  CAS  Google Scholar 

  25. O. N. Shebanova and P. Lazor (2003). J. Raman Spectrosc. 34, 845. https://doi.org/10.1002/jrs.1056.

    Article  CAS  Google Scholar 

  26. L. Slavov, M. V. Abrashev, T. Merodiiska, C. Gelev, R. E. Vandenberghe, I. Markova-Deneva, and I. Nedkov (2010). J. Magn. Magn. Mater. 322, 1904. https://doi.org/10.1016/j.jmmm.2010.01.005.

    Article  CAS  Google Scholar 

  27. A. M. Jubb and H. C. Allen (2010). ACS Appl. Mater. Interface 2, 2804. https://doi.org/10.1021/am1004943.

    Article  CAS  Google Scholar 

  28. M. Hanesch (2009). Geophys. J. Int. 177, 941. https://doi.org/10.1111/j.1365-246X.2009.04122.x.

    Article  CAS  Google Scholar 

  29. S. T. Shah, W. A. Yehya, O. Saad, K. Simarani, Z. Chowdhury, A. A. Alhadi, and L. A. Al-Ani (2017). Nanomaterials 7, 306. https://doi.org/10.3390/nano7100306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. M. Pisoschi and G. P. Negulescu (2011). Biochem. Anal. Biochem. 1, 106. https://doi.org/10.4172/2161-1009.1000106.

    Article  Google Scholar 

  31. K. J. Patra, S. Ali, I.-G. Oh, and K.-H. Baek (2016). Artif. Cell. Nanomed. Biotechnol. 45, 349. https://doi.org/10.3109/21691401.2016.1153484.

    Article  CAS  Google Scholar 

  32. H. Wu, J.-J. Yin, W. G. Wamer, M. Zeng, and Y. M. Lo (2014). J. Food Drug Anal. 22, 86. https://doi.org/10.1016/j.jfda.2014.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. F. Yu, Y. Huang, A. J. Cole, and V. C. Yang (2009). Biomaterials 30, 4716. https://doi.org/10.1016/j.biomaterials.2009.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. E. Fröhlich (2012). Int. J. Nanomed. 7, 5577. https://doi.org/10.2147/IJN.S36111.

    Article  Google Scholar 

  35. M. A. Voinov, J. O. S. Pagán, E. Morrison, T. I. Smirnova, and A. I. Smirnov (2011). J. Am. Chem. Soc. 133, 35. https://doi.org/10.1021/ja104683w.

    Article  CAS  PubMed  Google Scholar 

  36. L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. Toito de Lima, A. C. B. Delbem, and D. R. Monteiro (2018). Antibiotics 7, 46. https://doi.org/10.3390/antibiotics7020046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O. Lunov, T. Syrovets, B. Büchele, X. Jiang, C. Röcker, K. Tron, G. U. Nienhaus, P. Walther, V. Mailänder, K. Landfester, and T. Simmet (2010). Biomaterials 31, 5063. https://doi.org/10.1016/j.biomaterials.2010.03.023.

    Article  CAS  PubMed  Google Scholar 

  38. N. S. Ghandi and R. L. Mancera (2008). Chem. Biol. Drug Des. 72, 455. https://doi.org/10.1111/j.1747-0285.2008.00741.x.

    Article  CAS  Google Scholar 

  39. L. Ternent, D. A. Mayoh, M. R. Lees, and G.-L. Davies (2016). J. Mater. Chem. B 4, 3065. https://doi.org/10.1039/C6TB00832A.

    Article  CAS  PubMed  Google Scholar 

  40. S. Shukla, A. Jadaun, V. Arora, R. K. Sinha, N. Biyani, and V. K. Jain (2015). Toxicol. Rep. 2, 27. https://doi.org/10.1016/j.toxrep.2014.11.002.

    Article  CAS  PubMed  Google Scholar 

  41. G. Cairo, S. Recalcati, A. Mantovani, and M. Locati (2011). Trends Immunol. 32, 241. https://doi.org/10.1016/j.it.2011.03.007.

    Article  CAS  PubMed  Google Scholar 

  42. A. Laskar, J. Eilertsen, W. Li, and X.-M. Yuan (2013). Biochem. Biophys. Res. Commun. 441, 737. https://doi.org/10.1016/j.bbrc.2013.10.115.

    Article  CAS  PubMed  Google Scholar 

  43. J. M. Rojas, L. Sanz-Ortega, V. Mulens-Arias, L. Gutiérrez, S. Pérez-Yagüe, and D. F. Barber (2016). Nanomed. Nanotechnol. 12, 1127–1138. https://doi.org/10.1016/j.nano.2015.11.020.

    Article  CAS  Google Scholar 

  44. D. Gonnissen, Y. Qu, K. Langer, C. Öztürk, Y. Zhao, C. Chen, G. Seebohm, M. Düfer, H. Fuchs, H.-J. Galla, and K. Riehemann (2016). Int. J. Nanomed. 11, 5221. https://doi.org/10.2147/IJN.S106540.

    Article  CAS  Google Scholar 

  45. O. M. Ighodaro (2018). Biomed. Pharmacol. 108, 656. https://doi.org/10.1016/j.biopha.2018.09.058.

    Article  CAS  Google Scholar 

  46. C. N. Paiva and M. T. Bozza (2014). Antioxid. Redox Signal. 20, 1000. https://doi.org/10.1089/ars.2013.5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Z. Chen, J.-J. Yin, Y.-T. Zhou, Y. Zhang, L. Song, M. Song, S. Hu, and N. Gu (2012). ACS Nano 6, 4001. https://doi.org/10.1021/nn300291r.

    Article  CAS  PubMed  Google Scholar 

  48. R. Castañeda-Arriaga, A. Pérez-González, M. Reina, J. R. Alvarez-Idaboy, and A. Galano (2018). J. Phys. Chem. B 122, 6198. https://doi.org/10.1021/acs.jpcb.8b03500.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Czech Science Foundation No. 20-02177J. The Polish authors thank the EU Project POWR.03.02.00-00-I004/16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Świętek.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Świętek, M., Gunár, K., Kołodziej, A. et al. Surface Effect of Iron Oxide Nanoparticles on the Suppression of Oxidative Burst in Cells. J Clust Sci 34, 323–334 (2023). https://doi.org/10.1007/s10876-022-02222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02222-9

Keywords

Navigation