Skip to main content
Log in

Green Synthesis of Triangular ZnO Nanoparticles Using Azadirachta indica Leaf Extract and Its Shape Dependency for Significant Antimicrobial Activity: Joint Experimental and Theoretical Investigation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present study reports the green synthesis of triangular ZnO nanoparticles (G-ZnO NPs) using Azadirachta indica leaves extract, and a shape dependent density functional investigation for ZnO NPs on their antimicrobial activity. The X-ray diffraction (XRD) analysis shows the synthesized G-ZnO NPs are well crystalline in nature and calculated grain size is found to be 60–65 nm. The Fourier transforms infrared spectroscopy (FT-IR) represents that the functional group and capping agents are well attached to the nanoparticles, and the bands located near 500.8 cm−1, 459.07 cm−1 and 418.57 cm−1 represents G-ZnO NPs. Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDS) confirmed the presence of the synthesized G-ZnO nanoparticles with an average size range 100–200 nm. The synthesized G-ZnO NPs are found to be in the triangular shape. A detail theoretical investigation under density functional framework shows that our synthesized triangular ZnO nanoparticles are better candidate for biological interactions compared to the prototypical spherical counterpart. The synthesized G-ZnO nanoparticles using A. indica leaves extract in triangular shape are found to show significant antimicrobial activity against Escherichia coli and Bacillus subtilis indicating a better alternative to the typical chemical methods.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. S. Joshi, P. R. Patil, M. S. Nimase, and P. P. Bakare (2006). J. Nanopart. Res. 8, 635–643.

    Article  CAS  Google Scholar 

  2. R. Khan, A. Kaushik, P. R. Solanki, A. A. Ansari, M. K. Pandey, and B. D. Malhotra (2008). Anal. Chim. Acta 616, 207–213.

    Article  CAS  PubMed  Google Scholar 

  3. I. Perelshtein, A. Lipovsky, N. Perkas, T. Tzanov, M. Arguirova, M. Leseva, and A. Gedanken (2015). Ultrasonics Sonochem. 25, 82–88.

    Article  CAS  Google Scholar 

  4. J. A. Barreto, W. O’Malley, M. Kubeil, B. Graham, H. Stephan, and L. Spiccia (2011). Adv. Mater. 23, H18–H40.

    Article  CAS  PubMed  Google Scholar 

  5. P. Duran, F. Capel, J. Tartaj, and C. Moure (2002). Adv. Mater. 14, 137–141.

    Article  CAS  Google Scholar 

  6. C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt (2001). J. Phys. Chem. B 105, 5585–5588.

    Article  CAS  Google Scholar 

  7. P. Ramesh, A. Rajendran, and M. Meenakshisundaram (2014). J. Nanosci. Nanotechnoly. 2, 41–45.

    Google Scholar 

  8. R. Dobrucka and J. Długaszewska (2016). Saudi J. Biol. Sci. 23, 517–523.

    Article  CAS  PubMed  Google Scholar 

  9. B. Li, S. M. Li, J. H. Liu, and M. Yu (2014). Appl. Surf. Sci. 315, 241–246.

    Article  CAS  Google Scholar 

  10. D. Jain, H. K. Daima, S. Kachhwaha, and S. L. Kothari (2009). Digest J. Nanomater. Biostruct. 4, 557–563.

    Google Scholar 

  11. C. B. Ong, L. Y. Ng, and A. W. Mohammad (2018). Renew. Sustain. Energy Rev. 81, 536–551.

    Article  CAS  Google Scholar 

  12. M. Hasanpoor, M. Aliofkhazraei, and H. Delavari (2015). Procedia Mater. Sci. 11, 320–325.

    Article  CAS  Google Scholar 

  13. P. K. Samanta and S. Mishra (2013). Optik-Int. J. Light Electron Opt. 124, 2871–2873.

    Article  CAS  Google Scholar 

  14. M. Laurenti, N. Garino, S. Porro, M. Fontana, and C. Gerbaldi (2015). J. Alloys Compd. 640, 321–326.

    Article  CAS  Google Scholar 

  15. V. Anand and V. C. Srivastava (2015). J. Alloys Compd. 636, 288–292.

    Article  CAS  Google Scholar 

  16. A. Šarić, G. Štefanić, G. Dražić, and M. Gotić (2015). J. Alloys Compd. 652, 91–99.

    Article  Google Scholar 

  17. S. Ghosh, D. Majumder, A. Sen, and S. Roy (2014). Mater. Lett. 130, 215–217.

    Article  CAS  Google Scholar 

  18. S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Progress Nat. Sci. 22, 693–700.

    Article  Google Scholar 

  19. N. Bala, S. Saha, M. Chakraborty, M. Maiti, S. Das, R. Basu, and P. Nandy (2015). RSC Adv. 5, 4993–5003.

    Article  CAS  Google Scholar 

  20. D. Gnanasangeetha and D. SaralaThambavani (2013). Res J Mater Sci 2320, 6055.

    Google Scholar 

  21. H. A. Salam, R. Sivaraj, and R. Venckatesh (2014). Mater. Lett. 131, 16–18.

    Article  Google Scholar 

  22. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, and J. Hong (2007). Nanotechnology 18, 105104.

    Article  Google Scholar 

  23. D. Sharma, M. I. Sabela, S. Kanchi, P. S. Mdluli, G. Singh, T. A. Stenström, and K. Bisetty (2016). J. Photochem. Photobiol. B 162, 199–207.

    Article  CAS  PubMed  Google Scholar 

  24. D. Sharma, M. I. Sabela, S. Kanchi, K. Bisetty, A. A. Skelton, and B. Honarparvar (2018). J. Electroanalyt. Chem. 808, 160–172.

    Article  CAS  Google Scholar 

  25. D. Sharma, S. Kanchi, and K. Bisetty (2019). Arab. J. Chem. 12, 3576–3600.

    Article  CAS  Google Scholar 

  26. T. R. Lakshmeesha, M. K. Sateesh, B. Daruka Prasad, S. C. Sharma, D. Kavyashree, M. Chandrasekhar, and H. Nagabhushana (2014). Cryst. Growth Des. 14, 4068–4079.

    Article  CAS  Google Scholar 

  27. A. Belay, M. Mekuria, and G. Adam (2020). Nanomater. Nanotechnol. 10, 1–8.

    Article  Google Scholar 

  28. A. Cartwright, K. Jackson, C. Morgan, A. Anderson, and D. W. Britt (2020). Agronomy 10, 1018.

    Article  CAS  Google Scholar 

  29. K. Varaprasad, G. M. Raghavendra, T. Jayaramudu, and J. Seo (2016). Carbohydr. Polym. 135, 349–355.

    Article  CAS  PubMed  Google Scholar 

  30. A. Panáček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupova, V. Kryštof, P. Hamal, R. Zbořil, and L. Kvítek (2009). Antifungal activity of silver nanoparticles against Candidas. Biomaterials 30, 6333–6340.

    Article  PubMed  Google Scholar 

  31. N. Jones, B. Ray, K. T. Ranjit, and A. C. Manna (2008). FEMS Microbiol. Lett. 279, 71–76.

    Article  CAS  PubMed  Google Scholar 

  32. J. Chen, J. Zhu, H. H. Cho, K. Cui, F. Li, X. Zhou, J. T. Rogers, S. T. Wong, and X. Huang (2008). J. Exp. Nanosci. 3, 321–328.

    Article  CAS  Google Scholar 

  33. O. N. Agbenin and P. S. Marley (2006). J. Plant Protec. Res. 46, 215–220.

    Google Scholar 

  34. Weast, R.C. (ed.), Handbook of Chemistry and Physics, 68th edn. (CRC Press Inc., Boca Raton, FL, 2005) 1987–1988., p. B-144.

  35. S. Magaldi, S. Mata-Essayag, C. Hartung de Capriles, C. Perez, M. T. Colella, C. Olaizola, and Y. Ontiveros (2004). Int. J. Infect. Dis. 8, 39–45.

    Article  CAS  PubMed  Google Scholar 

  36. C. Valgas, S. M. De Souza, E. F. A. Smânia, I. I. Smânia Jr., and A., (2007). Braz. J. Microbiol. 38, 369–380.

    Article  Google Scholar 

  37. R. S. Mondal, D. R. Roy. Modeling of Bio-Activity and Toxicity in Light of NA Bases Interaction, (Scholars' Press, Latvia, 2019) European Union.

  38. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).

    Google Scholar 

  39. M. J. Frisch, et al., GAUSSIAN 09, Revision D01 (Gaussian Inc, Pittsburgh, 2009).

    Google Scholar 

  40. A. D. Becke (1993). J. Chem. Phys. 98, 5648–5652.

    Article  CAS  Google Scholar 

  41. T. H. Dunning, P. J. Hay, and in: Schaefer III, H.F. (eds.), Modern Theoretical Chemistry, vol. 3 (Plenum, New York, 1976).

    Google Scholar 

  42. P. J. Hay and W. R. Wadt (1985). J. Chem. Phys. 82, 270–283.

    Article  CAS  Google Scholar 

  43. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg (2010). J. Chem. Phys. 132, 19.

    Article  Google Scholar 

  44. S. Grimme, A. Hansen, J. G. Brandenburg, and C. Bannwarth (2016). Chem. Rev. 116, 5105–5154.

    Article  CAS  PubMed  Google Scholar 

  45. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke (1978). J. Chem. Phys. 68, 3801–3807.

    Article  CAS  Google Scholar 

  46. R. G. Pearson, Chemical hardness: Applications from molecules to solids (Wiley, Weinheim, 1997).

    Book  Google Scholar 

  47. R. G. Parr, L. V. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, 1922–1924.

    Article  CAS  Google Scholar 

  48. R. G. Parr and R. G. Pearson (1983). J. Am. Chem. Soc. 105, 7512–7516.

    Article  CAS  Google Scholar 

  49. T. Bhuyan, K. Mishra, M. Khanuja, R. Prasad, and A. Varma (2015). Mater. Sci. Semicond. Process. 32, 55–61.

    Article  CAS  Google Scholar 

  50. S.-H. Nam, T. K. Kim, and J.-H. Boo (2012). Catal. Today 185, 259–262.

    Article  CAS  Google Scholar 

  51. A. R. Freitas, M. Silva, M. L. Ramos, L. L. Justino, S. M. Fonseca, M. M. Barsan, C. M. Brett, M. R. Silva, and H. D. Burrows (2015). Dalton Trans. 44, 11491–11503.

    Article  CAS  PubMed  Google Scholar 

  52. L. Dash, R. Biswas, R. Ghosh, V. Kaur, B. Banerjee, T. Sen, R. A. Patil, Y.-R. Ma, and K. K. Haldar (2020). J. Photochem. Photobiol. A 400, 112682.

    Article  CAS  Google Scholar 

  53. Z. Chi, L. Zhu, X. Lu, H. Yu, and B. Liu (2012). Z. Anorg. Allg. Chem. 638, 1523–1530.

    Article  CAS  Google Scholar 

  54. H. Li and Y. Li (2009). Nanoscale 1, 128–132.

    Article  CAS  PubMed  Google Scholar 

  55. R. Biswas, A. Kundu, M. Saha, V. Kaur, B. Banerjee, R. S. Dhayal, R. A. Patil, Y.-R. Ma, T. Sen, and K. K. Haldar (2020). New J. Chem. 44, 12256–12265.

    Article  CAS  Google Scholar 

  56. R. Biswas, S. Mete, M. Mandal, B. Banerjee, H. Singh, I. Ahmed, and K. K. Haldar (2020). J. Phys. Chem. C 124, 3373–3388.

    Article  CAS  Google Scholar 

  57. P. Rajiv, S. Rajeshwari, and R. Venckatesh (2013). Spectrochim. Acta A 112, 384–387.

    Article  CAS  Google Scholar 

  58. D. Sharma, J. Rajput, B. S. Kaith, M. Kaur, and S. Sharma (2010). Thin Solid Films 519, 1224–1229.

    Article  CAS  Google Scholar 

  59. R. Yuvakkumar, J. Suresh, B. Saravanakumar, A. J. Nathanael, S. I. Hong, and V. Rajendran (2015). Spectrochim. Acta Part A 137, 250–258.

    Article  CAS  Google Scholar 

  60. M. A. Alzohairy (2016). Evid.-Based Complement. Alternati. Med. 2016, 1–11.

    Article  Google Scholar 

  61. K. Rangiah, B. A. Varalaxmi, and M. Gowda (2016). Anal. Methods 8, 2020–2031.

    Article  CAS  Google Scholar 

  62. S. K. Srivastava, B. Agrawal, A. Kumar, and A. Pandey (2020). J. Sci. Res. 64, 385–390.

    Google Scholar 

  63. K. S. Santos, A. M. Barbosa, V. Freitas, A. V. C. S. Muniz, M. C. Mendonça, R. C. Calhelha, I. C. F. R. Ferreira, E. Franceschi, F. F. Padilha, M. B. P. P. Oliveira, and C. Dariva (2018). Pharmaceuticals 11, 76–85.

    Article  CAS  PubMed Central  Google Scholar 

  64. S. B. Ulaeto, G. M. Mathew, J. K. Pancrecious, J. B. Nair, T. P. D. Rajan, K. Maiti, and B. C. Pai (2019). ACS Biomater Sci. Eng. 6, 235–245.

    Article  PubMed  Google Scholar 

  65. U. P. Singh, S. Maurya, and D. P. Singh (2005). J. Herb. Pharmacother. 5, 35–43.

    CAS  PubMed  Google Scholar 

  66. A. K. Ghimeray, C. W. Jin, B. K. Ghimire, and D. H. Cho (2009). Afr. J. Biotechnol. 8, 3084–3091.

    CAS  Google Scholar 

  67. K. Sunada, Y. Kikuchi, K. Hashimoto, and A. Fujishima (1998). Environ. Sci. Technol. 32 (5), 726–728.

    Article  CAS  Google Scholar 

  68. M. Fang, J. H. Chen, X. L. Xu, P. H. Yang, and H. F. Hildebrand (2006). Int. J. Antimicrob. Agents 27 (6), 513–517.

    Article  CAS  PubMed  Google Scholar 

  69. K. Elumalai and S. Velmurugan (2015). Appl. Surf. Sci. 345, 329–336.

    Article  CAS  Google Scholar 

  70. M. F. Khan, A. H. Ansari, M. Hameedullah, E. Ahmad, F. M. Husain, Q. Zia, U. Baig, M. R. Zaheer, M. M. Alam, A. M. Khan, and Z. A. AlOthman (2016). Sci. Rep. 6, 27689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. K. Lingaraju, H. R. Naika, K. Manjunath, R. B. Basavaraj, H. Nagabhushana, G. Nagaraju, and D. Suresh (2016). Appl. Nanosci. 6 (5), 703–710.

    Article  CAS  Google Scholar 

  72. M. F. Elkady, H. H. Shokry, E. E. Hafez, and A. Fouad (2015). Bioinorg. Chem. Appl. 2015, 1–20.

    Article  Google Scholar 

  73. M. Banoee, S. Seif, Z. E. Nazari, P. Jafari-Fesharaki, H. R. Shahverdi, A. Moballegh, K. M. Moghaddam, and A. R. Shahverdi (2010). J. Biomed. Mater. Res. Part B 93 (2), 557–561.

    Article  Google Scholar 

  74. V. Svetlichnyi, A. Shabalina, I. Lapin, D. Goncharova, and A. Nemoykina (2016). Appl.Surf. Sci. 372, 20–29.

    Article  CAS  Google Scholar 

  75. M. Ramesh, M. Anbuvannan, and G. Viruthagiri (2015). Spectrochim. Acta Part A 136, 864–870.

    Article  CAS  Google Scholar 

  76. K. Elumalai and S. Velmurugan (2015). Appl. Sur. Sci. 345, 329–336.

    Article  CAS  Google Scholar 

  77. M. M. Chikkanna, S. E. Neelagund, and K. K. Rajashekarappa (2019). SN Appl. Sci. 1, 117.

    Article  Google Scholar 

  78. B. K. Sharma, B. R. Mehta, V. P. Chaudhari, E. V. Shah, S. Mondal Roy, and D. R. Roy (2021). J Clust Sci. https://doi.org/10.1007/s10876-021-02090-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

DRR is thankful to the SERB, New Delhi, Govt. of India for financial support (Grant No. CRG/2020/002634). BKS is thankful for her UGC-RGNF fellowship (RGNF-2017-18-SC-GUJ-35487).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debesh R. Roy or Sutapa Mondal Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B.K., Mehta, B.R., Shah, E.V. et al. Green Synthesis of Triangular ZnO Nanoparticles Using Azadirachta indica Leaf Extract and Its Shape Dependency for Significant Antimicrobial Activity: Joint Experimental and Theoretical Investigation. J Clust Sci 33, 2517–2530 (2022). https://doi.org/10.1007/s10876-021-02145-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02145-x

Keywords

Navigation