Skip to main content
Log in

Facile Synthesis and Characterization of Quercetin-Loaded Alginate Nanoparticles for Enhanced In Vitro Anticancer Effect Against Human Leukemic Cancer U937 Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanoparticles synthesized from biopolymers have received attention for their use as biological carriers in the delivery of hydrophobic drugs. Alginate, a marine biopolymer, is utilized to synthesize nanoparticles as a nanocarrier to overcome the limitations of quercetin solubility and its bioavailability. The present study aims at the synthesis of alginate nanoparticles (ALG NPs) by a simple approach for the delivery of a bioactive compound, quercetin. Quercetin entrapped alginate nanoparticles (QR-ALG NPs) with a size of 180 nm and negative zeta potential of − 21.4 mV were synthesized following a cold precipitation method. QR-ALG NPs were analyzed by UV, Fluorescence spectroscopy, AFM, SEM, XRD, and FTIR. The formulated QR-ALG NPs achieved a drug entrapment efficiency of 68% along with a shelf life of 35 days at room temperature. In vitro drug release assay showed a sustainable quercetin release up to 6 days. DPPH assay showed that QR-ALG NPs retained its antioxidant activity. MTT results demonstrated that QR-ALG NPs enhanced anticancer efficacy on the U937 cell line. This novel method to synthesize ALG NP is simple, efficient, and less laborious, could be a promising application for encapsulating drugs in nanomedicine.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] R. Sun, and Q. Xia (2019). Colloid. Polym. Sci. 297, 1183–1198.

    Article  CAS  Google Scholar 

  2. [2] D. Patino-Ruiz, L. Marrugo, N. Reyes, M. Acevedo-Morantes, and A. Herrera (2020). Int. J. Polym. Sci. 2020, 1-10.

    Article  CAS  Google Scholar 

  3. [3] M. A. Khan, C. Yue, Z. Fang, S. Hu, H. Cheng, A. M. Bakry, and L. Liang (2019). J. Food Eng. 258, 45–53.

    Article  CAS  Google Scholar 

  4. [4] J. P. Paques, E. Van Der Linden, C. J. Van Rijn, and L.M. Sagis (2014). Adv. Colloid Interface, Sci. 209, 163–171.

    Article  PubMed  CAS  Google Scholar 

  5. [5] S. Pistone, D. Qoragllu, G. Smistad, and M. Hiorth (2015). Soft Matter. 11, 5765–5774.

    Article  PubMed  CAS  Google Scholar 

  6. [6] Y. Qi, M. Jiang, Y. L. Cui, L. Zhao, and X. Zhou (2015). Nanoscale Res. Lett. 10, 1-9.

    Article  CAS  Google Scholar 

  7. [7] P. Mukhopadhyay, K. Sarkar, S. Soam, and P.P. Kundu (2013). J. Appl. Polym. Sci. 129, 835-845.

    Article  CAS  Google Scholar 

  8. [8] H. Rasouli, M. H. Farzaei, and R. Khodarahmi (2017). Int. J. Food Prop. 20, 1700-1741.

    Article  CAS  Google Scholar 

  9. [9] L. G. Costa, J. M. Garrick, P. J. Roquè, and C. Pellacani (2016). Oxid. Med. Cell. Longev. 2016, 1-10.

    Google Scholar 

  10. [10] A. Massi, O. Bortolini, D. Ragno, T. Bernardi, G. Sacchetti, M. Tacchini, and C. De Risi (2017). Molecules. 22(8), 1270.

    Article  PubMed Central  CAS  Google Scholar 

  11. [11] S. M. Tang, X. T. Deng, J. Zhou, Q.P. Li, X. X. Ge, and L. Miao (2020). Biomed & Pharmacother121, 109604.

    Article  CAS  Google Scholar 

  12. [12] H. M. Eid and P. S. Haddad (2017). Curr. Med. Chem. 24, 355-364.

    Article  PubMed  CAS  Google Scholar 

  13. [13] A. J. Larson, J. D. Symons, and T. Jalili (2012). Adv. Nutr3, 39-46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. [14] J. S. Nam, A. R. Sharma, L. T. Nguyen, C. Chakraborty, G. Sharma, and S. S. Lee (2016). Molecules. 21, 108.

    Article  PubMed Central  Google Scholar 

  15. [15] X. Cai, Z. Fang, J. Dou, A.Yu, and G. Zhai (2013). Curr. Med. Chem. 20, 2572–2582.

    Article  PubMed  CAS  Google Scholar 

  16. [16] K.W. Ren, Y. H. Li, G. Wu, J. Z. Ren, H. B. Lu, Z. M. Li, and X. W. Han (2017). Int. J. Oncol50, 1299-1311.

    Article  PubMed  CAS  Google Scholar 

  17. [17] K. Sak, and H. Everaus, (2017). Curr. Genomics18(1), 3-26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. [18] C. M. Greene, N. G. McElvaney, S. J. O'Neill, and C. C. Taggart (2004). Infect Immun72(6), 3684-3687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. [19] D. Bi, R. Zhou, N. Cai, Q. Lai, Q. Han, Y. Peng, Z. Jiang, Z. Tang, J. Lu, W. Bao, and H. Xu (2017). Int. J. Biol. Macromol. 105, 1446-1454.

    Article  PubMed  CAS  Google Scholar 

  20. [20] H. Daemi, and M. Barikani (2012). Sci. Iran19(6), 2023-2028.

    Article  CAS  Google Scholar 

  21. A. Sharifi, L. Golestan, and M. Sharifzadeh Baei (2013). Journal of Nanoparticles. 2013. Article ID 754385. https://doi.org/https://doi.org/10.1155/2013/754385.

  22. [22] Y. Cheng, S. Yu, X. Zhen, X. Wang, W. Wu and X. Jiang (2012). ACS Appl. Mater. Interfaces. 4(10), 5325-5332.

    Article  PubMed  CAS  Google Scholar 

  23. [23] A. K. Mittal, S. Kumar, and U.C. Banerjee (2014). J. Colloid Interface Sci. 431, 194–199.

    Article  PubMed  CAS  Google Scholar 

  24. [24] A. Kumari, S. K. Yadav, Y. B. Pakade, B. Singh, and S. C. Yadav (2010). Colloids and Surf B Biointerfaces80(2), 184-192.

    Article  PubMed  CAS  Google Scholar 

  25. [25] S. K. Pandey, D. K. Patel, R. Thakur, D. P. Mishra, P. Maiti, and C. Haldar (2015). Int. J. Biol. Macromol. 75, 521–529.

    Article  PubMed  CAS  Google Scholar 

  26. [26] D. Aluani, V. Tzankova, Y. Yordanov, M. Kondeva-Burdina, and K. Yoncheva (2017). Biotechnol. Biotechnol. Equip. 31, 1055–1063.

    Article  CAS  Google Scholar 

  27. [27] P. Sundarrajan, P. Eswaran, A. Marimuthu, L.B. Subhadra, and P. Kannaiyan (2012). Bull. Korean Chem. Soc. 33, 3218–3224.

    Article  CAS  Google Scholar 

  28. [28] J. Yan, Y. H. Wu, D. G. Yu, G. R. Williams, S. M. Huang, W. Tao, and J. Y. Sun (2014). RSC Adv4(102), 58265-58271.

    Article  CAS  Google Scholar 

  29. [29] V. Tzankova, D. Aluani, M. Kondeva-Burdina, Y. Yordanov, F. Odzhakov, A. Apostolov, and K. Yoncheva (2017). Biomed. Pharmacother. 92, 569-579.

    Article  PubMed  CAS  Google Scholar 

  30. [30] P. Mukhopadhyay, S. Maity, S. Mandal, A. S. Chakraborti, A. K. Prajapati, and P. P. Kundu (2018). Carbohydr. Polym. 182, 42–51.

    Article  PubMed  CAS  Google Scholar 

  31. [31] P. Saralkar, and A. K. Dash (2017). AAPS Pharm SciTech. 18, 2814–2823.

    Article  CAS  Google Scholar 

  32. [32] S. F. Mirpoor, S. M. H. Hosseini, and A. R. Nekoei (2017). Food Chem. 233, 282–289.

    Article  PubMed  CAS  Google Scholar 

  33. [33] R. Baksi, D. P. Singh, S. P. Borse, R. Rana, V. Sharma, and M. Nivsarkar (2018). Biomed. Pharmacother. 106. 1513–1526.

    Article  PubMed  CAS  Google Scholar 

  34. [34] J. Hao, B. Guo, S. Yu, W. Zhang, D. Zhang, J. Wang, and Y. Wang (2017). LWT - Food Sci. Technol. 85, 37–44.

    Article  CAS  Google Scholar 

  35. [35] Y. Zhang, Y. Yang, K. Tang, X. Hu, and G. Zou (2008). J. Appl. Polym. Sci107(2), 891-897.

    Article  CAS  Google Scholar 

  36. [36] M. P. Souza, A. F. Vaz, M. T. Correia, M. A. Cerqueira, A. A. Vicente, and M. G. Carneiro-da-Cunha (2014). Food Bioprocess Technol. 7, 1149-1159.

    Article  CAS  Google Scholar 

  37. [37] A. A. Lozano-Pérez, H. C. Rivero, M. del, C. Pérez Hernández, A. Pagán, M. G. Montalbán, G. Víllora, and J. L. Cénis (2017). Int. J. Pharm. 518, 11-19.

    Article  PubMed  CAS  Google Scholar 

  38. [38] S. Maity, P. Mukhopadhyay, P. P. Kundu, and A. S. Chakraborti (2017). Carbohydr. Polym. 170, 124–132.

    Article  PubMed  CAS  Google Scholar 

  39. [39] H. T. Nguyen, and F. M. Goycoolea (2017). Molecules. 22, 1975.

    Article  CAS  Google Scholar 

  40. [40] R. Pal, S. Panigrahi, D. Bhattacharyya, and A.S. Chakraborti (2013). J. Mol. Struct. 1046, 153–163.

    Article  CAS  Google Scholar 

  41. [41] T. Khampieng, P. Aramwit, and P. Supaphol (2015). Int. J. Biol. Macromol80, 636-643.

    Article  PubMed  CAS  Google Scholar 

  42. [42] P. Mukhopadhyay, S. Chakraborty, S. Bhattacharya, R. Mishra, and P. P. Kundu (2015). Int. J. Biol. Macromol72, 640-648.

    Article  PubMed  CAS  Google Scholar 

  43. [43] T. Nalini, S. K. Basha, A. M. M., Sadiq, V. S., Kumari, and K. Kaviyarasu (2019). J Drug Deliv Sci and Technol. 52, 65-72.

    Article  CAS  Google Scholar 

  44. [44] L. Dian, E. Yu, X. Chen, X. Wen, Z. Zhang, L. Qin, Q. Wang, G. Li, and C. Wu (2014). Nanoscale Res. Lett. 9, 684.

    Article  PubMed Central  CAS  Google Scholar 

  45. [45] M. Kakran, R. Shegokar, N.G. Sahoo, L. Al Shaal, L. Li, and R.H. Müller (2012). Eur. J. Pharm. Biopharm. 80,113-121.

    Article  PubMed  CAS  Google Scholar 

  46. [46] V. Dinesh Kumar, P. R. P. Verma, and S. K. Singh (2015). LWT - Food Sci. Technol. 61, 330–338.

    CAS  Google Scholar 

  47. [47] D. Chitkara, S. K. Nikalaje, A. Mittal, M. Chand, and N. Kumar (2012). Drug Deliv. Transl. Res. 2, 112–123.

    CAS  Google Scholar 

  48. [48] M. Sun, S. Nie, X. Pan, R. Zhang, Z. Fan, and S. Wang (2014). Colloids and Surf B Biointerfaces. 113, 15-24.

    Article  PubMed  CAS  Google Scholar 

  49. [49] A. K. Jain, K. Thanki, and S. Jain (2013). Mol. Pharm. 10, 3459–3474.

    Article  PubMed  CAS  Google Scholar 

  50. [50] M. Usacheva, B. Layek, S. S. Rahman Nirzhor, and S. Prabha (2016). J. Nanomater. 2016,1-11.

    Article  CAS  Google Scholar 

  51. [51] X. Chen, X. S. Dong, H. Y. Gao, Y. F. Jiang, Y. L. Jin, Y. Y. Chang, L. Y. Chen and Wang, J. H. (2016). Mol. Med. Rep. 13(1), 689-696.

    Article  PubMed  CAS  Google Scholar 

  52. [52] S. Cheng, N. Gao, Z. Zhang, G. Chen, A. Budhraja, Z. Ke, Y. O. Son, X. Wang, J. Luo, and X. Shi (2010). Clin. Cancer Res16(23), 5679-5691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. [53] F.M. Kievit, F.Y. Wang, C. Fang, H. Mok, K. Wang, J.R. Silber, R.G. Ellenbogen, and M. Zhang (2011). J. Control. Release. 152, 76–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the NRCBS, UGC-Genomics Instrumentation Facility, and also grateful to the University Grants Commission, New Delhi, for the UGC-BSR meritorious Fellowship awarded for the Ph.D. degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sureshkumar Selvaraj.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal subjects.

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, S., Shanmugasundaram, S., Maruthamuthu, M. et al. Facile Synthesis and Characterization of Quercetin-Loaded Alginate Nanoparticles for Enhanced In Vitro Anticancer Effect Against Human Leukemic Cancer U937 Cells. J Clust Sci 32, 1507–1518 (2021). https://doi.org/10.1007/s10876-020-01913-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01913-5

Keywords

Navigation