Skip to main content
Log in

Population Balance Modeling with Coupled Agglomeration and Disintegration Processes for TiO2 Nanoparticles Formation and Experimental Validation

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Particle size distribution of nanoparticles plays an important role in modelling many scientific and engineering problems. In this article, we proposed a Finite Volume Method (FVM) to model TiO2 nanoparticles formation using population balance equations (PBEs) by incorporating the simultaneous agglomeration and disintegration processes. The superposition of the PBEs for agglomeration and disintegration with different kernels leads to a system of partial-integro differential equations, which are numerically solved by using FVM. The precipitation of TiO2 nanoparticles in the batch reactor is studied experimentally as well as by numerical simulations based on Austin and Diemer disintegration kernels and Shear agglomeration kernel. Finally, the capability of the precipitation model is evaluated and the experimental results on particle sizes are compared with the numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

B:

Disintegration function (m−3)

D:

Particle size (µ)

S:

Selection function (s−1)

T:

Time (s)

x, y:

Particle volume (m3)

Qr (d):

Cumulative particle size distribution (%)

Re:

Reynolds-Number

β:

One-dimensional agglomeration kernel (m−3. s−1)

ε:

Turbulent energy dissipation rate (m2. s−3)

\( \upsilon \) :

Kinematic viscosity of the fluid (m2. s−1)

\( \eta \) :

Viscosity of the fluid (kg. m−1. s−1)

λ:

Wavelength (m)

\( \dot{\gamma } \) :

Shear rate (s−1)

\( \,\phi \) :

Dimensionless material constant

\( \gamma \) :

Dimensionless material constant

References

  1. A. Hagfeldt and M. Graetzel (2002). Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, (1), 49–68.

    Article  Google Scholar 

  2. S. Sarangapani, B. V. Tilak, and C. P. Chen (1996). Materials for electrochemical capacitors theoretical and experimental constraints. J. Electrochem. Soc. 143, (11), 3791–3799.

    Article  CAS  Google Scholar 

  3. L. Vayssières, C. Chanéac, E. Tronc, and J. P. Jolivet (1998). Size tailoring of magnetite particles formed by aqueous precipitation: an example of thermodynamic stability of nanometric oxide particles. J. Colloid Interface Sci. 205, (2), 205–212.

    Article  Google Scholar 

  4. H. C. Schwarzer and W. Peukert (2005). Prediction of aggregation kinetics based on surface properties of nanoparticles. Chem. Eng. Sci. 60, (1), 11–25.

    Article  CAS  Google Scholar 

  5. H. C. Schwarzer and W. Peukert (2002). Experimental investigation into the influence of mixing on nanoparticle precipitation. Chem. Eng. Technol. 25, (6), 657–661.

    Article  CAS  Google Scholar 

  6. J. T. T. Nikolov, W. Hintz, and V. Jordanova (2003). Synthesis and characterization of titanium dioxide nanoparticles. J. Univ. Chem. Technol. Metall. 3, 725–734.

    Google Scholar 

  7. B. J. Ridder, A. Majumder, and Z. K. Nagy (2014). Population balance model-based multiobjective optimization of a multisegment multiaddition (MSMA) continuous plug-flow antisolvent crystallizer. Ind. Eng. Chem. Res. 53, (11), 4387–4397.

    Article  CAS  Google Scholar 

  8. R. T. Kügler, S. Doyle, and M. Kind (2015). Fundamental insights into barium sulfate precipitation by time-resolved in situ synchrotron radiation wide-angle X-ray scattering (WAXS). Chem. Eng. Sci. 133, 140.

    Article  CAS  Google Scholar 

  9. H. C. Schwarzer, F. Schwertfirm, M. Manhart, H. J. Schmid, and W. Peukert (2006). Predictive simulation of nanoparticle precipitation based on the population balance equation. Chem. Eng. Sci. 61, (1), 167–181.

    Article  CAS  Google Scholar 

  10. M. C. Heine and S. E. Pratsinis, “Droplet and particle dynamics during flame spray synthesis of nanoparticles,” in AIChE Annual Meeting, Conference Proceedings, 2005, p. 3046.

  11. S. R. K. Perala and S. Kumar (2014). On the two-step mechanism for synthesis of transition-metal nanoparticles. Langmuir 30, (42), 12703–12711.

    Article  CAS  Google Scholar 

  12. P. Stolzenburg and G. Garnweitner (2017). Experimental and numerical insights into the formation of zirconia nanoparticles: a population balance model for the nonaqueous synthesis. React. Chem. Eng. 2, (3), 337–348.

    Article  CAS  Google Scholar 

  13. D. Ramkrishna Population balances: theory and applications to particulate systems in engineering (Academic Press, Cambridge, 2000).

    Google Scholar 

  14. Y. P. Gokhale, R. Kumar, J. Kumar, W. Hintz, G. Warnecke, and J. Tomas (2009). Disintegration process of surface stabilized sol-gel TiO 2 nanoparticles by population balances. Chem. Eng. Sci. 64, (24), 5302–5307.

    Article  CAS  Google Scholar 

  15. R. Kumar, J. Kumar, and G. Warnecke (2012). Moment presering finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Math. Model. Methods Appl. Sci. 23, (07), 1235–1273.

    Article  Google Scholar 

  16. Z. A. Melzak (1957). A scalar transport equation. Trans. Am. Math. Soc. 85, (2), 547.

    Article  Google Scholar 

  17. R. M. Ziff (1991). New solutions to the fragmentation equation. J. Phys. A Gen. Phys. 24, (12), 2821–2828.

    Article  Google Scholar 

  18. D. L. Marchisio and R. O. Fox (2005). Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36, (1), 43–73.

    Article  CAS  Google Scholar 

  19. F. Filbet and P. Laurençot (2004). Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25, (6), 2004–2028.

    Article  Google Scholar 

  20. J. Kumar, M. Peglow, G. Warnecke, and S. Heinrich (2008). An efficient numerical technique for solving population balance equation involving aggregation, breakage, growth and nucleation. Powder Technol. 182, (1), 81–104.

    Article  CAS  Google Scholar 

  21. S. Kumar and D. Ramkrishna (1996). On the solution of population balance equations by discretization—I. A fixed pivot technique. Chem. Eng. Sci. 51, (8), 1311–1332.

    Article  CAS  Google Scholar 

  22. M. Vanni (2000). Approximate population balance equations for aggregation-breakage processes. J. Colloid Interface Sci. 221, (2), 143–160.

    Article  CAS  Google Scholar 

  23. M. Kostoglou and A. J. Karabelas (2009). On sectional techniques for the solution of the breakage equation. Comput. Chem. Eng. 33, (1), 112–121.

    Article  CAS  Google Scholar 

  24. W. Hundsdorfer and J. G. Verwer Numerical solution of time-dependent advection-diffusion-reaction equations, 1st ed (Springer-Verlag, Berlin Heidelberg, 2003).

    Book  Google Scholar 

  25. R. Kumar and J. Kumar (2013). Numerical simulation and convergence analysis of a finite volume scheme for solving general breakage population balance equations. Appl. Math. Comput. 219, (10), 5140–5151.

    Google Scholar 

  26. L. G. Austin (2002). A treatment of impact breakage of particles. Powder Technol. 126, (1), 85–90.

    Article  CAS  Google Scholar 

  27. R. B. Diemer and J. H. Olson (2002). A moment methodology for coagulation and breakage problems: part 1—analytical solution of the steady-state population balance. Chem. Eng. Sci. 57, (12), 2193–2209.

    Article  CAS  Google Scholar 

  28. R. B. Diemer and J. H. Olson (2002). A moment methodology for coagulation and breakage problems: part 3-generalized daughter distribution functions. Chem. Eng. Sci. 57, (19), 4187–4198.

    Article  CAS  Google Scholar 

  29. P. G. Saffman and J. S. Turner (1956). On the collision of drops in turbulent clouds. J. Fluid Mech. 1, (1), 16–30.

    Article  Google Scholar 

  30. M. Sommer, F. Stenger, W. Peukert, and N. J. Wagner (2006). Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chem. Eng. Sci. 61, (1), 135–148.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Gokhale, Y.P. & Surasani, V.K. Population Balance Modeling with Coupled Agglomeration and Disintegration Processes for TiO2 Nanoparticles Formation and Experimental Validation. J Clust Sci 32, 1361–1369 (2021). https://doi.org/10.1007/s10876-020-01895-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01895-4

Keywords

Navigation