Skip to main content
Log in

Biosynthesis of NiO Nanoparticles Using Soursop (Annona muricata L.) Fruit Peel Green Waste and Their Photocatalytic Performance on Crystal Violet Dye

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A simple, inexpensive, and eco-friendly route has been demonstrated for synthesizing spherical NiO nanoparticles (NiO NPs) with a size range between 20 and 90 nm using aqueous extract of soursop (Annona muricata L.) fruit peel green waste which plays the role of reducing and stabilizing agent during the synthesis. The formation, morphology, structure and other physicochemical properties of the resulting NiO NPs were characterized by various experimental techniques such as X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The photocatalytic performance of the prepared NiO NPs was assessed toward the photodegradation of crystal violet (CV) dye as a model pollutant under sunlight illumination. The measurement of chemical oxygen demand (COD) values verified the degree mineralization of CV dye. The results show that nearly 99.0% of CV pollutant was photodegraded at 105 min of illumination, making it a promising candidate for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. R. Mallampat, L. Xuanjun, A. Adin, and S. Valiyaveettil (2015). ACS Sustainable Chem. Eng. 3, 1117.

    Google Scholar 

  2. M. A. M. Salleh, D. K. Mahmoud, W. A. Karim, and A. Idris (2011). Desalination 280, 1.

    CAS  Google Scholar 

  3. W. Jiang, Y. Zhu, G. Zhu, Z. Zhang, X. Chen, and W. Yao (2017). J. Mater. Chem. A 5, 5661.

    CAS  Google Scholar 

  4. M. H. Wu, L. Li, Y. C. Xue, G. Xu, L. Tang, N. Liu, and W. Huang (2018). Appl. Catal. B 228, 103.

    CAS  Google Scholar 

  5. S. Sekar, M. Surianarayanan, V. Ranganatha, D. R. MacFarlane, and A. B. Mandal (2012). Environ. Sci. Technol. 46, 4902.

    PubMed  CAS  Google Scholar 

  6. Y. Wang, L. Zhao, H. Peng, J. Wu, Z. Liu, and X. Guo (2016). J. Chem. Eng. Data 61, 3266.

    CAS  Google Scholar 

  7. A. Mohammadi and P. Veisi (2018). J. of Environ. Chem. Eng. 6, 4634.

    CAS  Google Scholar 

  8. Z. Cheng, J. Liao, B. He, F. Zhang, F. Zhang, X. Huang, and L. Zhou (2015). ACS Sustainable Chem. Eng. 3, 1677.

    CAS  Google Scholar 

  9. T. T. N. Phan, A. N. Nikoloski, P. A. Bahri, and D. Li (2019). Appl. Surf. Sci. 491, 488.

    CAS  Google Scholar 

  10. M. Wawrzkiewicz (2014). Ind. Eng. Chem. Res. 53, 11838.

    CAS  Google Scholar 

  11. B. Shi, G. Li, D. Wang, C. Feng, and H. Tang (2007). J. Hazard. Mater. 143, 567.

    PubMed  CAS  Google Scholar 

  12. M. Chethana, L. G. Sorokhaibam, V. M. Bhandari, S. Raja, and V. V. Ranade (2016). ACS Sustainable Chem. Eng. 4, 2495.

    CAS  Google Scholar 

  13. S. S. Moghaddam, M. R. A. Moghaddam, and M. Arami (2010). J. Hazard. Mater. 175, 651.

    PubMed  Google Scholar 

  14. D. Pathania, D. Gupta, A. H. Al-Muhtaseb, G. Sharma, A. Kumar, M. Naushad, T. Ahamad, and S. M. Alshehri (2016). J. Photochem. Photobiol. A 329, 61.

    CAS  Google Scholar 

  15. E. S. Baeissa (2016). J. Alloys Compd. 678, 267.

    CAS  Google Scholar 

  16. Z. He, C. Gao, M. Qian, Y. Shi, J. Chen, and S. Song (2014). Ind. Eng. Chem. Res. 53, 3435.

    CAS  Google Scholar 

  17. S. S. Shenvi, A. M. Isloor, A. F. Ismai, S. J. Shilton, and A. Al Ahmed (2015). Ind. Eng. Chem. Res. 54, 4965.

    CAS  Google Scholar 

  18. Z. Yang, M. Li, M. Yu, J. Huang, H. Xu, Y. Zhou, P. Song, and R. Xu (2016). Chem. Eng. J. 303, 1.

    CAS  Google Scholar 

  19. L. Malaeb and M. A. George (2011). Desalination 267, 1.

    CAS  Google Scholar 

  20. M. Arif, A. Sanger, M. Shkir, A. Shing, and R. S. Katiyar (2019). Physica B: Condensed Matter. 552, 88.

    CAS  Google Scholar 

  21. J. Xu, M. Wang, Y. Liu, J. Li, and H. Cui (2019). Adv. Powder Technol. 30, 861.

    CAS  Google Scholar 

  22. M. Alagiri, S. Ponnusamy, and C. Muthamizhchelva (2012). J. Mater. Sci. Mater. Electron. 23, 728.

    CAS  Google Scholar 

  23. N. N. M. Zorkipli, N. H. M. Kausand, and A. A. Mohamad (2016). Procedia Chem. 19, 626.

    CAS  Google Scholar 

  24. A. Aslani, V. Oroojpour, and M. Fallahi (2011). Appl. Surf. Sci. 257, 4056.

    CAS  Google Scholar 

  25. M. Derakhshi, T. Jamali, M. Elyasi, M. Bijad, R. Sadeghi, A. Kamali, K. Niazazari, M. R. Shahmiri, A. Bahari, and S. Mokhtari (2013). Int. J. Electrochem. Sci. 8, 8252.

    CAS  Google Scholar 

  26. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, and G. Lu (2012). Mater. Lett. 68, 168.

    CAS  Google Scholar 

  27. W. N. Wang, Y. Itoh, I. W. Lenggoro, and K. Okuyam (2004). Mater. Sci. Eng. B 111, 69.

    Google Scholar 

  28. A. G. Al-Sehemi, A. S. Al-Shihri, A. Kalam, G. Du, and T. Ahmad (2014). J. Mol. Struct. 1058, 56.

    CAS  Google Scholar 

  29. X. Song and L. Gao (2008). J. Am. Ceram. Soc. 91, 3465.

    CAS  Google Scholar 

  30. G. T. Anand, R. Nithiyavathi, R. Ramesha, S. J. Sundaram, and K. Kaviyarasu (2020). Surf. Interface 18, 100460.

    CAS  Google Scholar 

  31. J. H. Lee, J. Y. Lim, C. S. Lee, J. T. Park, and J. H. Kim (2017). Appl. Surf. Sci. 420, 849.

    CAS  Google Scholar 

  32. S. Farhadi and Z. Roostaei-Zaniyani (2011). Polyhedron 30, 971.

    CAS  Google Scholar 

  33. Z. Wei, H. Qiao, H. Yang, C. Zhang, and X. Yan (2009). J. Alloys Compd. 479, 855.

    CAS  Google Scholar 

  34. A. A. Ezhilarasi, J. J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, and L. J. Kennedy (2016). J. Photochem. Photobiol. B 164, 352.

    PubMed  CAS  Google Scholar 

  35. F. T. Thema, E. Manikandan, A. Gurib-Fakim, and M. Maaza (2016). J. Alloys Compd. 657, 655.

    CAS  Google Scholar 

  36. A. E. Angel, J. V. Judith, K. Kaviyarasu, L. K. John, R. J. Ramalingam, and H. A. Allohedan (2018). J. Photochem. Photobiol. B 180, 39–50.

    Google Scholar 

  37. N. Mayedwa, N. Mongwaketsi, S. Khamlich, K. Kaviyarasu, N. Matinise, M. Maaza. (2018). App. Surf. Sci. 446, 266.

  38. M. I. Din, A. G. Nabi, A. Rani, A. Aihetasham, and M. Mukhtar (2018). Environ. Nanotechnol. Monit. Manage. 9, 29.

    Google Scholar 

  39. P. Kganyago, L. M. Mahlaule-Glory, M. M. Mathipa, B. Ntsendwana, N. Mketo, Z. Mbita, and N. C. Hintsho-Mbita (2018). J. Photochem. Photobiol. B 182, 18.

    PubMed  CAS  Google Scholar 

  40. A. A. Olajire and A. A. Mohammed (2020). Adv. Powder Technol. 31, 211.

    CAS  Google Scholar 

  41. K. Lingaraju, H. R. Naika, H. Nagabhushana, K. Jayanna, S. Devaraja, and G. Nagaraju (2020). Arab. J. Chem. 13, 4712.

    CAS  Google Scholar 

  42. M. Nasseri, F. Ahrari, and B. Zakerinasab (2016). Appl. Organometal. Chem. 30, 978.

    CAS  Google Scholar 

  43. M. Kundu, G. Karunakaran, and D. Kuznetsov (2017). Powder Technol. 311, 132.

    CAS  Google Scholar 

  44. R. Yuvakkumar, J. Suresh, A. Joseph Nathanael, M. Sundrarajan, and S. I. Hong (2014). Mater. Sci. Eng. C 41, 17.

    CAS  Google Scholar 

  45. S. Z. Moghadamtousi, M. Fadaeinasab, S. Nikzad, G. Mohan, H. M. Ali, and H. A. Kadir (2015). Int. J. Mol. Sci. 16, 15625.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. A. V. Coria-Téllez, E. Montalvo-Gónzalez, E. M. Yahia, and E. N. Obledo-Vázquez (2018). Arab. J. Chem. 11, 662.

    Google Scholar 

  47. K. C. Agu and P. N. Okolie (2017). Food Sci. Nutr. 5, 1029.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. K. Karthikeyan, S. Abitha, and V. G. Saravanan Kumar (2016). Int. J. Pharmacog. Phytochem. Res. 8, 1833.

    Google Scholar 

  49. S. Tiwari (2008). J. Nat. Prod. 1, 27.

    Google Scholar 

  50. A. A. Adegoke, P. A. IberI, D. A. Akinpelu, O. A. Aiyegoro, and C. I. Mboto (2010). Int. J. Appl. Res. Nat. Prod. 3, 6.

    Google Scholar 

  51. P. Bose, S. Ghosh, S. Basak, and M. K. Naskar (2016). J. Asian Ceram. Soc. 4, 1.

    Google Scholar 

  52. W. Wang, Y. Liu, C. Xu, C. Zheng, and G. Wang (2002). Chem. Phys. Lett. 362, 119.

    CAS  Google Scholar 

  53. L. X. Song, Z. K. Yang, Y. Teng, J. Xia, and P. Du (2013). J. Mater. Chem. A 1, 8731.

    CAS  Google Scholar 

  54. L. A. García-Cerda, L. E. Romo-Mendoza, and M. A. Quevedo-López (2009). J. Mater. Sci. 44, 4553.

    Google Scholar 

  55. Y. Hanifehpour, A. Morsali, B. Mirtamizdoust, S. W. Joo, and B. Soltani (2017). Ultrason. Sonochem. 37, 430.

    PubMed  CAS  Google Scholar 

  56. J. Fang, Y. Zhang, Y. Zhou, S. Zhao, C. Zhang, M. Huang, and Y. Gao (2017). Appl. Surf. Sci. 412, 616.

    CAS  Google Scholar 

  57. C. Yang, Y. Qing, K. An, Z. Zhang, L. Wang, and C. Liu (2017). Mater. Chem. Phys. 195, 149.

    CAS  Google Scholar 

  58. S. Saha, M. Jana, P. Khanra, P. Samanta, H. Koo, N. C. Murmu, and T. Kuila (2015). ACS Appl. Mater. Interfaces 7, 14211.

    PubMed  CAS  Google Scholar 

  59. G. Gao, W. Gao, E. Cannuccia, J. T. Tijerina, L. Balicas, A. Mathkar, T. N. Narayanan, Z. Liu, B. K. Gupta, J. Peng, Y. Yin, A. Rubio, and P. M. Ajayan (2012). Nano Lett. 12, 3518.

    PubMed  CAS  Google Scholar 

  60. X. Song and L. Gao (2008). J. Phys. Chem. C 112, 15299.

    CAS  Google Scholar 

  61. L. Kumari, W. Z. Li, C. H. Vannoy, R. M. Leblanc, and D. Z. Wang (2009). Cryst. Res. Technol. 44, 495.

    CAS  Google Scholar 

  62. A. G. Al-Sehemi, A. S. Al-Shihri, A. Kalam, G. Du, and T. Ahmad (2014). Mol. Struct. 1058, 56.

    CAS  Google Scholar 

  63. X. Li, X. Zhang, Z. Li, and Y. Qian (2006). Solid State Commun. 137, 581.

    CAS  Google Scholar 

  64. A. T. Khalil, M. Ovais, I. Ullah, M. Ali, Z. K. Shinwari, S. Khamlich, and M. Maaza (2017). Artif. Cells Nanomed. Biotechnol. 12, 1767.

    CAS  Google Scholar 

  65. A. K. H. Bashira, L. C. Razanamahandry, A. C. Nwanyaa, K. Kaviyarasua, W. Sabana, H. E. A. Mohamed, S. K. O. Ntwamped, F. I. Ezemaa, and M. Maazaa (2019). J. Phys. Chem Solid 134, 133.

    Google Scholar 

  66. F. Ibrahim, M. H. Aziz, M. Fatima, F. Shaheen, S. M. Ali, and Q. Huang (2019). Mater. Lett. 234, 129.

    Google Scholar 

  67. A. Loqman, B. El Bali, J. Lützenkirchen, P. G. Weidler, and A. Kherbeche (2017). Appl. Water Sci. 7, 3649.

    CAS  Google Scholar 

  68. S. T. Huang, W. W. Lee, J. L. Chang, W. S. Huang, S. Y. Chou, and C. C. Chen (2014). J. Taiwan Inst. Chem. Eng. 45, 1927.

    CAS  Google Scholar 

  69. A. Mittal, J. Mittal, A. Malviya, D. Kaur, and V. K. Gupta (2010). J. Colloid Interface Sci. 343, 463.

    PubMed  CAS  Google Scholar 

  70. K. Mohanty, J. T. Naidu, B. C. Meikap, and M. N. Biswas (2006). Ind. Eng. Chem. Res. 45, 5165.

    CAS  Google Scholar 

  71. R. Ahmad (2009). J. Hazard. Mater. 171, 767.

    PubMed  CAS  Google Scholar 

  72. Y. H. Liao, J. X. Wang, J. S. Lin, W. H. Chung, W. Y. Lin, and C. C. Chen (2011). Catal. Today 174, 148.

    CAS  Google Scholar 

  73. M. Mittal, M. Sharma, and O. P. Pandey (2014). J. Nanosci. Nanotechnol. 14, 2725.

    PubMed  CAS  Google Scholar 

  74. M. Sharma, T. Jain, S. Singh, and O. P. Pandey (2012). Sol. Energy 86, 626.

    CAS  Google Scholar 

  75. V. M. Vinosel, S. Anand, M. A. Janifer, S. Pauline, S. Dhanvel, P. Praveena, and A. Stephen (2019). J. Mater. Sci. Mater. Electron. 30, 9663.

    CAS  Google Scholar 

  76. E. A. Abdelrahman and R. M. Hegazey (2019). J. Inorg. Organomet. Polym. Mater. 29, 346.

    CAS  Google Scholar 

  77. M. Mittal, M. Sharma, and O. P. Pandey (2014). Sol. Energy 110, 386.

    CAS  Google Scholar 

  78. Y. Panahian, N. Arsalani, and R. Nasiri (2018). J. Photochem. Photobiol. A 365, 45.

    CAS  Google Scholar 

  79. R. Ranjith, V. Renganathan, S. M. Chen, N. S. Selvan, and P. S. Rajam (2019). Ceram. Int. 45, 12926.

    CAS  Google Scholar 

  80. S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar, and A. Pugazhendhi (2019). J. Photochem. Photobiol. B 192, 74.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Universiti Tunku Abdul Rahman (UTAR) for financial support and also for providing a conducive environment to execute this research work successfully. This work was also partially supported by JSPS KAKENHI Grant Number JP15H04132 and JSPS KAKENHI Grant Number JP19H05356. The authors also extend their appreciation to the University Research Grant at Universiti Kebangsaan Malaysia (UKM) for supporting this work through research group no. (GUP-2018-130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammod Aminuzzaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminuzzaman, M., Chong, CY., Goh, WS. et al. Biosynthesis of NiO Nanoparticles Using Soursop (Annona muricata L.) Fruit Peel Green Waste and Their Photocatalytic Performance on Crystal Violet Dye. J Clust Sci 32, 949–958 (2021). https://doi.org/10.1007/s10876-020-01859-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01859-8

Keywords

Navigation