Skip to main content
Log in

Evaluation of Antioxidant, Anticancer and DNA Binding Potentials of Noble Metal Nanoparticles Synthesized Using Aristolochia indica and Indigofera tinctoria

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The deployment of biological resources for the synthesis of nanoparticles of metals and metal oxides is the latest addition to green chemistry. The present work describes the use of aqueous stem extracts of Aristolochia indica and Indigofera tinctoria for the synthesis of silver and gold nanoparticles (Ag and Au NPs). The synthesized NPs were characterized by UV–Vis., FT-IR, TEM, XRD and EDAX analyzes. The antioxidant activities of functionalized Ag and Au NPs were studied by the DPPH method and the nanoparticles showed greater antioxidant activity than that of the extract; AgNPs synthesized by A. indica showed antioxidant activity of 84%. The in vitro cytotoxicity of the Ag and Au NPs was assessed by the MTT assay method using the HeLa cell line and the NPs synthesized by A. indica showed nearly 100% toxicity. DNA binding capacity was investigated using calf thymus-DNA by UV–Vis spectra, the hyperchromism shift inferred the groove binding of nanoparticles and the binding constants (1.66 × 107 and 1.06 × 107 and 0.77 × 107 and 1.59 × 107 M−1 for the NPs of Ag and Au synthesized by A. indica and I. tinctoria respectively) indicate a high potential of these nanoparticles for the administration of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. L. Poon, J. R. McPherson, P. Tan, B. T. Teh, and S. G. Rozen (2014). Genome Med. 6, 1–14.

    Article  Google Scholar 

  2. G. Matlashewski, P. Lamb, D. Pim, J. Peacock, L. Crawford, and S. Benchimol (1984). EMBO J. 3, 3257–3262.

    Article  CAS  Google Scholar 

  3. D. Wujcik (2014). Semin. Oncol. Nurs. 30, 139–146.

    Article  Google Scholar 

  4. C. H. Yarbro, D. Wujeik, and B. H. Gobel Cancer nursing: principles and practice, 8th ed (Jones & Bartlett Learning, Burlington, 2018), p. 12.

    Google Scholar 

  5. Y. J. Surh (2003). Nat. Rev. Cancer 3, 768–780.

    Article  CAS  Google Scholar 

  6. M. Kakarala, D. E. Brenner, H. Korkaya, C. Cheng, K. Tazi, C. Ginestier, S. Liu, G. Dontu, and M. S. Wicha (2010). Breast Cancer Res. Treat. 122, 777–785.

    Article  CAS  Google Scholar 

  7. P. Fresco, F. Borges, C. Dintz, and M. P. M. Marques (2006). Med. Res. Rev. 26, 747–766.

    Article  CAS  Google Scholar 

  8. Z. Z. J. Lim, J. E. J. Li, C. T. Ng, L. Y. L. Yung, and B. H. Bay (2011). Acta Pharmacol. Sin. 32, 983–990.

    CAS  Google Scholar 

  9. K. T. Nguyen (2011). J. Nanomed. Nanotechnol. 2, 1–2.

    Article  CAS  Google Scholar 

  10. S. Velammal, T. Devi, and T. Amaladhas (2016). J. Nanostructure Chem. 6, 247–260.

    Article  CAS  Google Scholar 

  11. K. Mishra, H. Ojha, and N. K. Chaudhury (2012). Food Chem. 130, 1036–1043.

    Article  CAS  Google Scholar 

  12. D. Gerlier and N. Thomasset (1986). J. Immunol. Methods 94, 57–63.

    Article  CAS  Google Scholar 

  13. X. Pin-xian, X. Zhi-hong, C. Feng-juan, Z. Zheng-zhi, and Z. Xiao-wen (2009). J. Inorg. Biochem. 103, 210–218.

    Article  CAS  Google Scholar 

  14. R. Swarup, S. Ratan, G. Utpal, and K. D. Tapan (2015). Spectrochim. Acta A 141, 176–184.

    Article  CAS  Google Scholar 

  15. H. Xiaohua and A. E. Mostafa (2010). J. Adv. Res. 1, 13–28.

    Article  Google Scholar 

  16. T. Amaladhas, S. Sivagami, T. Devi, N. Ananthi, and S. Velammal (2012). Adv. Nat. Sci- Nanosci. Nanotechnol. 3, 1–7.

    Google Scholar 

  17. B. Ankamwar, Biomedical Engineering - Technical applications in medicine, ed. by R. Hudak (IntechOpen, 2012), pp. 93–113.

  18. B. L. Halvorsen, K. Holte, M. C. W. Myhrstad, I. Barikmo, E. Hvattum, S. F. Remberg, A. B. Wold, K. Haffner, H. Baugerod, L. F. Andersen, O. Moskaug, D. R. Jacobs Jr., and R. Blomhoff (2002). J. Nutr. 132, 461–471.

    Article  CAS  Google Scholar 

  19. P. Kuppusamy, M. M. Yusoff, G. P. Maniam, and N. Govindan (2016). Saudi Pharm. J. 24, 473–484.

    Article  Google Scholar 

  20. Y. Hong, S. Lin, Y. Jiang, and M. Ashraf (2008). Plant Foods Hum. Nutr. 63, 200–204.

    Article  CAS  Google Scholar 

  21. C. H. Ramamurthy, M. Padma, I. D. M. Samadanam, R. Mareeswaran, A. Suyavaran, M. Suresh Kumar, K. Premkumar, and C. Thirunavukkarasu (2013). Colloids Surf. B. 102, 808–815.

    Article  CAS  Google Scholar 

  22. M. V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, and R. M. O’Regan (2006). Lancet Oncol. 7, 657–667.

    Article  CAS  Google Scholar 

  23. L. C. Young, K. K. Joa, C. Sang-Un, M. Yong-KI, B. Myung-ae, T. K. Bum, and H. Jung- Nyoung (2009). Bioorg. Med. Chem. Lett. 19, 3036–3040.

    Article  CAS  Google Scholar 

  24. P. V. Rani, G. L. Mun, M. P. Hande, and S. Valiyaveettil (2009). ACS Nano. 3, 279–290.

    Article  CAS  Google Scholar 

  25. K. Venugopal, H. A. Rather, K. Rajagopal, M. P. Shanthi, K. Sheriff, M. Illiyas, R. A. Rather, E. Manikandan, S. Uvarajan, M. Bhaskar, and M. Maaza (2017). J. Photochem. Photobiol. B. 167, 282–289.

    Article  CAS  Google Scholar 

  26. S. Devanesan, M. S. AlSalhi, R. V. Balaji, A. J. Ranjitsingh, A. Ahamed, A. A. Alfuraydi, F. Y. AlQahtani, F. S. Aleanizy, and A. H. Othman (2018). Nanoscale Res. Lett. 13, 315.

    Article  CAS  Google Scholar 

  27. A. A. Alfuraydi, S. Devanesan, M. Al-Ansari, M. S. AlSalhi, and A. J. Ranjitsingh (2019). J. Photochem. Photobiol. B. 192, 83–89.

    Article  CAS  Google Scholar 

  28. R. Vijayan, S. Joseph, and B. Mathew (2018). Artif. Cells Nanomed. Biotechnol. 46, 861–871.

    CAS  Google Scholar 

  29. S. Prabhu and E. Poulose (2012). Nano Lett. 2, 1–10.

    Article  Google Scholar 

  30. B. D. Chitrani, A. A. Ghazani, and W. C. W. Chan (2006). Nano. Lett. 6, 662–668.

    Article  CAS  Google Scholar 

  31. M. I. Sriram, S. B. Mani Kanth, K. Kalishwaralal, and S. Gurunathan (2010). Int. J. Nanomed. 5, 753–762.

    CAS  Google Scholar 

  32. S. Nahid and H. Saba (2012). Spectrochim. Acta A 96, 278–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Priya Velammal acknowledges the University Grants Commission under Minor Project Scheme, [MRP-5333/14(SERO/UGC)]. The authors are grateful to King Saud University, Riyadh, Saudi Arabia for Researchers Supporting Project, (RSP-2020/68).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Amaladhas Thomas.

Ethics declarations

Conflicts of interest

Authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, P., AlSalhi, M.S., Devanesan, S. et al. Evaluation of Antioxidant, Anticancer and DNA Binding Potentials of Noble Metal Nanoparticles Synthesized Using Aristolochia indica and Indigofera tinctoria. J Clust Sci 32, 917–927 (2021). https://doi.org/10.1007/s10876-020-01858-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01858-9

Keywords

Navigation