Skip to main content
Log in

Electronic Structure of Nanoclusters by Quantum Monte Carlo Methods

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The valence electron binding energies of the atomic clusters \(\hbox {XAl}_3^-\) (X = Si, Ge, and Sn) and \(\hbox {YAl}_4^-\) (Y = Li, Na, and Cu) are investigated using a combination of the fixed-node diffusion quantum Monte Carlo method (FN-DMC), the density functional theory, and the Hartree–Fock approximation. A brief review of the used theoretical approaches is presented with emphasis on the variational and diffusion Monte Carlo techniques and their applications to study the electronic structures of atomic clusters. The obtained results for the vertical detachment energies (VDE) from the FN-DMC are in excellent agreement with available experimental photoelectron spectroscopy data. A comparison between the FN-DMC results and HF ones allows to quantify the electron correlation effects and their impact on the stability of the clusters. The analysis reveals that the electron correlation enhances the VDE of the atomic clusters significantly and plays an essential role in their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Ferrando, J. Jellinek and R. L. Johnston (2008). Chem. Rev. 108, 845.

    PubMed  CAS  Google Scholar 

  2. B. K. Teo, H. Zhang and X. B. Shi (1993). J. Am. Chem. Soc. 115, 8489.

    CAS  Google Scholar 

  3. M. Valden, X. Lai and D. W. Goodman (1998). Science281, 1647.

    PubMed  CAS  Google Scholar 

  4. J. M. Mercero, A. I. Boldyrev, G. Merino and J. M. Ugalde (2015). Chem. Soc. Rev. 44, 6519.

    PubMed  CAS  Google Scholar 

  5. Y.-S. Chen, H. Choi and P. V. Kamat (2013). J. Am. Chem. Soc. 135, 8822.

    PubMed  CAS  Google Scholar 

  6. H. R. Hsing, P. López Ríos, R. J. Needs and C. M. Wei (2013). Phys. Rev. B88, 165412.

    Google Scholar 

  7. T. Tsatsoulis, F. Hummel, D. Usvyat, M. Schutz, G. H. Booth, S. S. Binnie, M. J. Gillan, D. Alfè, A. Michaelides, and A. Gruneis (2017). J. Chem. Phys. 146, 204108.

    PubMed  PubMed Central  Google Scholar 

  8. M. A. Morales, J. McMinis, B. K. Clark, J. Kim and G. E. Scuseria (2012). J. Chem. Theor. Comp. 8, 2181.

    CAS  Google Scholar 

  9. D. Alfè and M. J. Gillan (2005). Phys. Rev. B71, 220101.

    Google Scholar 

  10. D. Alfè, M. Alfredsson, J. Brodholt, M. J. Gillan, M. D. Towler and R. J. Needs (2005). Phys. Rev. B72, 014114.

    Google Scholar 

  11. W. D. Parker, J. W. Wilkins and R. G. Hennig (2011). Phys. Status Solidi B248, 267.

    CAS  Google Scholar 

  12. E. Mostaani, N. D. Drummond and V. I. Fal’ko (2015). Phys. Rev. Lett. 115, 115501.

    PubMed  CAS  Google Scholar 

  13. R. Maezono, A. Ma, M. D. Towler and R. J. Needs (2007). Phys. Rev. Lett. 98, 025701.

    PubMed  Google Scholar 

  14. S. B. Healy, C. Filippi, P. Kratzer, E. Penev and M. Scheffler (2001). Phys. Rev. Lett. 87, 016105.

    PubMed  CAS  Google Scholar 

  15. C. Filippi, S. B. Healy, P. Kratzer, E. Pehlke and M. Scheffler (2001). Phys. Rev. Lett. 89, 166102.

    Google Scholar 

  16. L. Cândido, J. N. Teixeira Rabelo, J. L. Da Silva and G.-Q. Hai (2012). Phys. Rev. B85, 245404.

    Google Scholar 

  17. B. G. A. Brito, G.-Q. Hai, J. N. Teixeira Rabelo and L. Cândido (2014). Phys. Chem. Chem. Phys. 14, 8639.

    Google Scholar 

  18. B. G. A. Brito, G.-Q. Hai and L. Cândido (2013). Chem. Phys. Lett. 586, 108.

    CAS  Google Scholar 

  19. J. Higino Damasceno Jr., J. N. Teixeira Rabelo, and L. Cândido (2016). Inorg. Chem. 55, 7442.

    PubMed  CAS  Google Scholar 

  20. B. G. A. Brito, G.-Q. Hai, J. N. Teixeira Rabelo and L. Cândido (2018). Phys. Rev. A98, 062508.

    CAS  Google Scholar 

  21. N. L. Moreira, B. G. A. Brito, J. N. Teixeira Rabelo, and L. Cândido (2016). J. Comput. Chem. 37, 1531.

    PubMed  CAS  Google Scholar 

  22. B. G. A. Brito, G.-Q. Hai and L. Cândido (2014). Chem. Phys. Lett. 616, 212.

    Google Scholar 

  23. B. G. A. Brito, G.-Q. Hai and L. Cândido (2017). J. Chem. Phys. 146, 174306.

    PubMed  CAS  Google Scholar 

  24. B. G. A. Brito, G.-Q. Hai and L. Cândido (2018). Chem. Phys. Lett. 708, 53.

    Google Scholar 

  25. E. M. Isaac Moreira, B. G. A. Brito, J. Higino Damasceno Jr., J. N. Teixeira Rabelo, G.-Q. Hai, and L. Cândido (2018). J. Chem. Phys. 149, 214303.

    PubMed  CAS  Google Scholar 

  26. D. M. Ceperley and B. J. Alder (1981). Phys. Rev. Lett. 45, 566 (1980).

    Google Scholar 

  27. B. L. Hammond, W. A. Lester Jr., and P. J. Reynolds (1994). Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific Publishing, Singapore).

    Google Scholar 

  28. W. M. C. Foulkes, L. Mitas, R. J. Needs and G. Rajagopal (2001). Rev. Mod. Phys. 73, 33.

    CAS  Google Scholar 

  29. R. M. Martin, L. Reining, and D. M. Ceperley (2016). Interacting Electrons: Theory and Computational Approaches (Cambridge University Press, Cambridge).

    Google Scholar 

  30. M. J. Frish et al. (2004). GAUSSIAN 03 , Revision C.02 (Gaussian, Inc., Wallingford).

    Google Scholar 

  31. W. McMillan (1965). Phys. Rev. 138, A422.

    Google Scholar 

  32. D. M. Ceperley and G. V. Chester (1976). Phys. Rev. D13, 3208.

    CAS  Google Scholar 

  33. D. M. Ceperley (1986). J. Stat. Phys. 43, 815.

    Google Scholar 

  34. A. Ma, N. D. Drummond, M. D. Towler and R. J. Needs (2005). Phys. Rev. E71, 066704.

    CAS  Google Scholar 

  35. N. D. Drummond, J. R. Trail and R. J. Needs (2016). Phys. Rev. B94, 165170.

    Google Scholar 

  36. J. Trail and R. J. Needs (2005). Chem. Phys. 122, 014112.

    CAS  Google Scholar 

  37. J. Trail and R. J. Needs (2005). Chem. Phys. 122, 174109.

    CAS  Google Scholar 

  38. M. Casula (2006). Phys. Rev. B74, 161102.

    Google Scholar 

  39. M. Casula, S. Moroni, S. Sorella and C. Filippi (2010). J. Chem. Phys. 132, 154113.

    PubMed  Google Scholar 

  40. E. L. Shirley and R. M. Martin (1993). Phys. Rev. B47, 15413.

    CAS  Google Scholar 

  41. N. D. Drummond, M. D. Towler and R. J. Needs (2004). Phys. Rev. B70, 235119.

    Google Scholar 

  42. P. R. C. Kent, R. J. Needs and G. Rajagopal (1999). Phys. Rev. B59, 12344.

    CAS  Google Scholar 

  43. N. D. Drummond and R. J. Needs (2005). Phys. Rev. B72, 085124.

    Google Scholar 

  44. M. H. Kalos (1970). Phys. Rev. A2, 250.

    Google Scholar 

  45. D. M. Ceperley and M. H. Kalos Quantum Many-Body Problems in Monte Carlo Methods in Statistical Physics (Springer-Verlag, New York, 1979).

    Google Scholar 

  46. H. F. Trotter (1959). Proc. Am. Math. Soc. 10, 545.

    Google Scholar 

  47. J. B. Anderson (1976). J. Chem. Phys. 85, 4121.

    Google Scholar 

  48. D. Feller (1992). J. Chem. Phys. 96, 6104.

    CAS  Google Scholar 

  49. D. Feller (1993). J. Chem. Phys. 98, 7059.

    CAS  Google Scholar 

  50. R. J. Needs, M. D. Towler, N. D. Drummond and P. L. Rios (2010). J. Phys.: Condens. Matter22, 023201.

    CAS  Google Scholar 

  51. H.-J. Zhai, L.-S. Wang, A. N. Alexandrova, A. I. Boldyrev and V. G. Zakrzewski (2003). J. Phys. Chem. A107, 9319.

    CAS  Google Scholar 

  52. X. Li, H.-F. Zhang, L.-S. Wang, A. E. Kuznetsov, A. I. Cannon, and N. A. Boldyrev (2001). Angew. Chem. Int. Ed. 40, 1867.

    CAS  Google Scholar 

  53. X. Li, A. E. Kuznetsov, H.-F. Zhang, A. I. Boldyrev and L.-S. Wang (2001). Science291, 859.

    PubMed  CAS  Google Scholar 

  54. I. G. Kaplan, O. Dolgounitcheva, J. D. Watts and J. V. Ortiz (2002). J. Chem. Phys. 117, 3687.

    CAS  Google Scholar 

  55. T. Koopmans (1934). Physica1, 104.

    Google Scholar 

Download references

Acknowledgements

This research was supported by CNPq, FAPESP, and FAPEG/PRONEX under Grant No. 201710267000503. The authors acknowledge computational resources from the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources of the SDumont supercomputer, URL: http://sdumont.lncc.br.

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação de Amparo à Pesquisa do Estado de Goiás

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cândido.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cândido, L., Brito, B.G.A., Teixeira Rabelo, J.N. et al. Electronic Structure of Nanoclusters by Quantum Monte Carlo Methods. J Clust Sci 32, 813–820 (2021). https://doi.org/10.1007/s10876-020-01841-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01841-4

Keywords

Navigation