Skip to main content

Advertisement

Log in

Theoretical and Conceptual Framework to Design Efficient Dye-Sensitized Solar Cells (DSSCs): Molecular Engineering by DFT Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Herein, eight new donor-π-acceptor organic dyes namely M1M8 have been theoretically investigated for their potential in optoelectronic properties. The M1M8 were designed through structural modification of π-conjugated bridge of reference reported molecule IC2. The designed molecules contain Indolo[3,2,1-jk]carbazole as core donor unit and end capped cyanoacrylic acid as acceptor unit. DFT and TDDFT calculations using B3LYP, CAM-B3LYP, ωB97XD and M062X functional were performed to evaluate the photophysical and photovoltaic properties. Results indicate that HOMO–LUMO energy gaps in M1M8 have been found smaller than IC2. Among all, M7 is a material with lowest energy gap 2.61 eV, red shifted absorption wavelength value 436 nm. Results of the calculated redox potential of the ground state, vertical excitation energy of the dye, oxidation potential of the dye in the excited state, free energy change for electron injection, dye regeneration and open circuit photovoltage and light harvesting efficiency indicates that π-bridges in M1M8 would show better power conversion efficiency than IC2. Especially, dye M7 with π-bridge 5-(thiazol-5yl)thiazole is found to be the most promising candidate for highly effective DSSCs properties. This theoretical framework may provide new ways for experimentalists to design high-performance DSSCs materials for optoelectronic applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. J. Sweeney and J. Mukherjee Optoelectronic Devices and Materials, Springer Handbook of Electronic and Photonic Materials (Springer, Berlin, 2017), p. 1.

    Google Scholar 

  2. S. Zhang, X. Yang, Y. Numata, and L. Han (2013). Energy Environ. Sci. 6, (5), 1443–1464.

    Google Scholar 

  3. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel (1993). J. Am. Chem. Soc. 115, (14), 6382–6390.

    CAS  Google Scholar 

  4. M. K. Nazeeruddin, P. Pechy, and M. Grätzel (1997). Chem. Commun. 18, 1705–1706.

    Google Scholar 

  5. B. O’regan and M. Grätzel (1991). Nature 353, (6346), 737.

    Google Scholar 

  6. B. Nagarajan, S. Kushwaha, R. Elumalai, S. Mandal, K. Ramanujam, and D. Raghavachari (2017). J. Mater. Chem. A 5, (21), 10289–10300.

    CAS  Google Scholar 

  7. M. R. S. A. Janjua, M. U. Khan, B. Bashir, M. A. Iqbal, Y. Song, S. A. R. Naqvi, and Z. A. Khan (2012). Comp. Theor. Chem. 994, 34–40.

    CAS  Google Scholar 

  8. M. R. S. A. Janjua, M. Amin, M. Ali, B. Bashir, M. U. Khan, M. A. Iqbal, W. Guan, L. Yan, and Z. M. Su (2012). Eur. J. Inorg. Chem. 2012, (4), 705–711.

    CAS  Google Scholar 

  9. M. U. Khan, M. Ibrahim, M. Khalid, M. S. Qureshi, T. Gulzar, K. M. Zia, A. A. Al-Saadi, and M. R. S. A. Janjua (2019). Chem. Phys. Lett. 715, 222–230.

    CAS  Google Scholar 

  10. M. U. Khan, M. Ibrahim, M. Khalid, A. A. C. Braga, S. Ahmed, and A. Sultan (2019). J. Cluster Sci. 30, (2), 415–430.

    CAS  Google Scholar 

  11. M. U. Khan, J. Iqbal, M. Khalid, R. Hussain, A. A. C. Braga, M. Hussain, and S. Muhammad (2019). RSC Adv. 9, (45), 26402–26418.

    CAS  Google Scholar 

  12. F. Wu, L. T. L. Lee, J. Liu, S. Zhao, T. Chen, M. Wang, C. Zhong, and L. Zhu (2015). Synth. Met. 205, 70–77.

    CAS  Google Scholar 

  13. R. Soto-Rojo, J. Baldenebro-López, and D. Glossman-Mitnik (2015). Phys. Chem. Chem. Phys. 17, (21), 14122–14129.

    CAS  PubMed  Google Scholar 

  14. S. S. Soni, K. B. Fadadu, J. V. Vaghasiya, B. G. Solanki, K. K. Sonigara, A. Singh, D. Das, and P. K. Iyer (2015). J. Mater. Chem. A 3, (43), 21664–21671.

    CAS  Google Scholar 

  15. Z.-S. Huang, H. Meier, and D. Cao (2016). J. Mater. Chem. C 4, (13), 2404–2426.

    CAS  Google Scholar 

  16. Y. Li, Y. Li, P. Song, F. Ma, J. Liang, and M. Sun (2017). RSC Adv. 7, (33), 20520–20536.

    CAS  Google Scholar 

  17. T. Higashino and H. Imahori (2015). Dalton Trans. 44, (2), 448–463.

    CAS  PubMed  Google Scholar 

  18. J. K. Roy, S. Kar, and J. Leszczynski (2018). Sci. Rep. 8, (1), 10997.

    PubMed  PubMed Central  Google Scholar 

  19. P. Cowper, A. Pockett, G. Kociok-Köhn, P. J. Cameron, and S. E. Lewis (2018). Tetrahedron 74, (22), 2775–2786.

    CAS  Google Scholar 

  20. H. Li, M. Fang, R. Tang, Y. Hou, Q. Liao, A. Mei, H. Han, Q. Li, and Z. Li (2016). J. Mater. Chem. A 4, (42), 16403–16409.

    CAS  Google Scholar 

  21. H. Qiao, Y. Deng, R. Peng, G. Wang, J. Yuan, and S. Tan (2016). RSC Adv. 6, (74), 70046–70055.

    CAS  Google Scholar 

  22. Z. Shen, X. Zhang, F. Giordano, Y. Hu, J. Hua, S. M. Zakeeruddin, H. Tian, and M. Grätzel (2017). Mater. Chem. Front. 1, (1), 181–189.

    CAS  Google Scholar 

  23. B. Zhang, G. Shi, Z. Yang, F. Zhang, and S. Pan (2017). Angew. Chem. Int. Ed. 56, (14), 3916–3919.

    CAS  Google Scholar 

  24. G. Shi, Y. Wang, F. Zhang, B. Zhang, Z. Yang, X. Hou, S. Pan, and K. R. Poeppelmeier (2017). J. Am. Chem. Soc. 139, (31), 10645–10648.

    CAS  PubMed  Google Scholar 

  25. Z. Yang, B.-H. Lei, W. Zhang, and S. Pan (2019). Chem. Mater. 31, (8), 2807–2813.

    CAS  Google Scholar 

  26. X. Chen, B. Zhang, F. Zhang, Y. Wang, M. Zhang, Z. Yang, K. R. Poeppelmeier, and S. Pan (2018). J. Am. Chem. Soc. 140, (47), 16311–16319.

    CAS  PubMed  Google Scholar 

  27. T. Delgado-Montiel, J. Baldenebro-López, R. Soto-Rojo, and D. Glossman-Mitnik (2016). Theor. Chem. Acc. 135, (10), 235.

    Google Scholar 

  28. J. Liu, X. Yang, J. Zhao, and L. Sun (2013). RSC Adv. 3, (36), 15734–15743.

    CAS  Google Scholar 

  29. H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, and L. Sun (2008). J. Phys. Chem. C 112, (29), 11023–11033.

    CAS  Google Scholar 

  30. X. Xie, Z. Liu, W. Li, F.-Q. Bai, E.-C. Lee, and H.-X. Zhang (2019). Chem. Phys. Lett. 719, 39–44.

    CAS  Google Scholar 

  31. K.-H. Chang, C.-K. Tai, L. Chen, P.-L. Yeh, and B.-C. Wang (2019). Res. Chem. Intermed. 45, (1), 77–90.

    CAS  Google Scholar 

  32. M. Xie, L. Hao, R. Jia, J. Wang, and F.-Q. Bai (2019). New J. Chem. 43, (2), 651–661.

    CAS  Google Scholar 

  33. T. Delgado-Montiel, R. Soto-Rojo, J. Baldenebro-López, and D. Glossman-Mitnik (2019). Molecules 24, (21), 3897.

    CAS  PubMed Central  Google Scholar 

  34. J. B. Henry, S. I. Wharton, E. R. Wood, H. McNab, and A. R. Mount (2011). J. Phys. Chem. A 115, (21), 5435–5442.

    CAS  PubMed  Google Scholar 

  35. J.-H. Tsai, C.-C. Chueh, M.-H. Lai, C.-F. Wang, W.-C. Chen, B.-T. Ko, and C. Ting (2009). Macromolecules 42, (6), 1897–1905.

    CAS  Google Scholar 

  36. H.-P. Zhao, F.-Z. Wang, C.-X. Yuan, X.-T. Tao, J.-L. Sun, D.-C. Zou, and M.-H. Jiang (2009). Org. Electron. 10, (5), 925–931.

    CAS  Google Scholar 

  37. S. I. Wharton, J. B. Henry, H. McNab, and A. R. Mount (2009). Chem. Eur. J. 15, (22), 5482–5490.

    CAS  PubMed  Google Scholar 

  38. C. Luo, W. Bi, S. Deng, J. Zhang, S. Chen, B. Li, Q. Liu, H. Peng, and J. Chu (2014). J. Phys. Chem. C 118, (26), 14211–14217.

    CAS  Google Scholar 

  39. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. J. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian 09 (Gaussian Inc, Wallingford, 2009).

    Google Scholar 

  40. Z. Yang, C. Liu, C. Shao, X. Zeng, and D. Cao (2016). Nanotechnology 27, (26), 265701.

    PubMed  Google Scholar 

  41. Z. Yang, C. Shao, and D. Cao (2015). RSC Adv. 5, (29), 22892–22898.

    CAS  Google Scholar 

  42. J. Autschbach (2009). Chemphyschem 10, (11), 1757–1760.

    CAS  PubMed  Google Scholar 

  43. A. Dreuw and M. Head-Gordon (2005). Chem. Rev. 105, (11), 4009–4037.

    CAS  PubMed  Google Scholar 

  44. R. Dennington, T. Keith, and J. Millam Gauss View Version 5 (Semichem Inc, Shawnee Mission, 2009).

    Google Scholar 

  45. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, and G. R. Hutchison (2012). J. Cheminform. 4, (1), 17.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. G.A. Andrienko, Chemcraft. Graphical Software for Visualization of Quantum Chemistry Computations, 2010. https://www.chemcraftprog.com.

  47. N. M. O’boyle, A. L. Tenderholt, and K. M. Langner (2008). J. Comput. Chem. 29, (5), 839–845.

    PubMed  Google Scholar 

  48. M. U. Khan, M. Khalid, M. Ibrahim, A. A. C. Braga, M. Safdar, A. A. Al-Saadi, and M. R. S. A. Janjua (2018). J. Phys. Chem. C 122, (7), 4009–4018.

    CAS  Google Scholar 

  49. M. R. S. A. Janjua (2017). J. Iran. Chem. Soc. 14, (9), 2041–2054.

    CAS  Google Scholar 

  50. M. R. S. A. Janjua (2012). Inorg. Chem. 51, (21), 11306–11314.

    CAS  PubMed  Google Scholar 

  51. S. S. Amiri, S. Makarem, H. Ahmar, and S. Ashenagar (2016). J. Mol. Struct. 1119, 18–24.

    Google Scholar 

  52. R. G. Parr, L. Szentpaly, and S. Liu (1999). J. Am. Chem. Soc. 121, (9), 1922–1924.

    CAS  Google Scholar 

  53. P. K. Chattaraj, U. Sarkar, and D. R. Roy (2006). Chem. Rev. 106, (6), 2065–2091.

    CAS  PubMed  Google Scholar 

  54. Z. Cai-Rong, L. Zi-Jiang, C. Yu-Hong, C. Hong-Shan, W. You-Zhi, and Y. Li-Hua (2009). J. Mol. Struct: Theochem 899, (1–3), 86–93.

    Google Scholar 

  55. J. Zhang, H.-B. Li, S.-L. Sun, Y. Geng, Y. Wu, and Z.-M. Su (2012). J. Mater. Chem. 22, (2), 568–576.

    CAS  Google Scholar 

  56. H. S. Nalwa Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductors, vol. 1 (Academic Press, Cambridge, 2001).

    Google Scholar 

  57. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya (2004). J. Phys. Chem. B 108, (15), 4818–4822.

    CAS  Google Scholar 

  58. T. Marinado, K. Nonomura, J. Nissfolk, M. K. Karlsson, D. P. Hagberg, L. Sun, S. Mori, and A. Hagfeldt (2009). Langmuir 26, (4), 2592–2598.

    Google Scholar 

  59. R. G. Pearson (1988). Inorg. Chem. 27, (4), 734–740.

    CAS  Google Scholar 

  60. C.-R. Zhang, L. Liu, J.-W. Zhe, N.-Z. Jin, Y. Ma, L.-H. Yuan, M.-L. Zhang, Y.-Z. Wu, Z.-J. Liu, and H.-S. Chen (2013). Int. J. Mol. Sci. 14, (3), 5461–5481.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. G. Boschloo and A. Hagfeldt (2009). Acc. Chem. Res. 42, (11), 1819–1826.

    CAS  PubMed  Google Scholar 

  62. T. Manzoor, S. Asmi, S. Niaz, and A. HussainPandith (2017). Int. J. Quantum Chem 117, (5), e25332.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the financial support from Saudi Aramco Project # CHEM-2409.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Ramzan Saeed Ashraf Janjua or Saba Jamil.

Ethics declarations

Conflict of interest

No conflicts declared.

Associated Content

Optimized Cartesian coordinates of our studied compounds are available in supporting information file

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjua, M.R.S.A., Khan, M.U., Khalid, M. et al. Theoretical and Conceptual Framework to Design Efficient Dye-Sensitized Solar Cells (DSSCs): Molecular Engineering by DFT Method. J Clust Sci 32, 243–253 (2021). https://doi.org/10.1007/s10876-020-01783-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01783-x

Keywords

Navigation