Skip to main content
Log in

A CuBr Metal–Organic Framework: From Two Dimensional Net to Quasi-Three Dimensional Frame Through Encapsulated Cu2Br2 Cluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new metal–organic framework of [(CuBrL1)(CuBr)0.25] (1) [L1 = 1,3,5-tris(4′-pyridyloxadiazole)-2,4,6-triethylbenzene] has been synthesized and characterized by single crystal X-ray diffraction, elemental analysis, infrared spectroscopy, thermogravimetric analyses and powder X-ray diffraction. As revealed by the single crystal X-ray diffraction, there exist one kind of L1 ligand and two kinds of (CuBr)x units in complex 1. L1 and the fully occupied CuBr monomer form a 3 × 3 two-dimensional wavelike net. Each 2D net is composed of two kinds of Cu-organic cycles, Cu4 with four Cu(I) centers and Cu2 with only two. The 2D nets are packed into 3D frameworks through π–π interactions in the AB fashion. This structure feature can be attributed to the flexibility of the tri-armed ligand. The second kind of CuBr unit is ca. 1/4 occupied Cu2Br2 dimer. From the viewpoint of host–guest chemistry, the Cu2Br2 dimer can be seen as a guest encapsulated in the Cu2 cycle through Br1–Cu2 coordination bond and Br2–π interactions. 1 displays typical dual photo-luminescence in the solid which can be assigned to the fixed ligands and CuBr clusters respectively. The CCDC number of 1 is 1958712.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Li, H. M. Wen, Y. Cui, W. Zhou, G. Qian, and B. Chen (2016). Adv. Mater. 28, 8819.

    Article  CAS  Google Scholar 

  2. Y. B. Huang, J. Liang, X. S. Wang, and R. Cao (2017). Chem. Soc. Rev. 46, 126.

    Article  CAS  Google Scholar 

  3. J. Jiao, W. Gong, X. Wu, S. Yang, and Y. Cui (2019). Coord. Chem. Rev. 385, 174.

    Article  CAS  Google Scholar 

  4. Z. Tang, H. Chen, Y. Zhang, B. Zheng, S. Zhang, and P. Cheng (2019). Cryst. Growth. Des. 19, 1172.

    Article  CAS  Google Scholar 

  5. Y. Xie, S. Ning, Y. Zhang, Z. Tang, S. Zhang, and R. Tang (2018). Dyes. Pigm. 150, 36.

    Article  CAS  Google Scholar 

  6. X. Zhao, S. Zhang, J. Yan, L. Li, G. Wu, W. Shi, G. Yang, N. Guan, and P. Cheng (2018). Inorg. Chem. 57, 5030.

    Article  CAS  Google Scholar 

  7. S. Chen, J. Gao, J. Chang, Y. Li, C. Huangfu, H. Meng, Y. Wang, G. Xia, and L. Feng (2019). ACS Appl. Mater. Interfaces 11, 17513.

    Article  CAS  Google Scholar 

  8. C.-W. Zhao, J.-P. Ma, Q.-K. Liu, X.-R. Wang, Y. Liu, J. Yang, J.-S. Yang, and Y.-B. Dong (2016). Chem. Commun. 52, 5238.

    Article  CAS  Google Scholar 

  9. A. Raghuvanshi, C. Strohmann, J. B. Tissot, S. Clement, A. Mehdi, S. Richeter, L. Viau, and M. Knorr (2017). Chem. Eur. J. 23, 16479.

    Article  CAS  Google Scholar 

  10. E. Baladi, V. Nobakht, A. Tarassoli, D. M. Proserpio, and L. Carlucci (2018). Cryst. Growth Des. 18, 7207.

    Article  CAS  Google Scholar 

  11. H. Hassanain, E. S. Davies, W. Lewis, D. L. Kays, and N. R. Champness (2019). Cryst. Eng. Comm 21, 4551.

    Article  CAS  Google Scholar 

  12. M. Bortoluzzi, J. Castro, M. Girotto, F. Enrichi, and A. Vomiero (2019). Inorg. Chem. Commun. 102, 141.

    Article  CAS  Google Scholar 

  13. N. Nuñez-Dallos, A. Muñoz-Castro, M. Fuentealba, E. G. Pérez, and J. J. Hurtado (2019). Inorg. Chim. Acta, 119136.

  14. A. Bonnot, C. Strohmann, M. Knorr, and P. D. Harvey (2013). J. Clust. Sci. 25, 261.

    Article  Google Scholar 

  15. P. D. Harvey and M. Knorr (2010). Macromol. Rapid. Commun. 31, 808.

    Article  CAS  Google Scholar 

  16. R. Y. Wang, X. Zhang, J. H. Yu, and J. Q. Xu (2019). Photochem. Photobiol. Sci. 18, 477.

    Article  CAS  Google Scholar 

  17. R. Peng, M. Li, and D. Li (2010). Coord. Chem. Rev. 254, 1.

    Article  CAS  Google Scholar 

  18. S. Zhang, W. Shi, and P. Cheng (2017). Coord. Chem. Rev. 352, 108.

    Article  CAS  Google Scholar 

  19. S.-J. Liu, C. Cao, F. Yang, M.-H. Yu, S.-L. Yao, T.-F. Zheng, W.-W. He, H.-X. Zhao, T.-L. Hu, and X.-H. Bu (2016). Cryst. Growth. Des. 16.

  20. A. Tarassoli, V. Nobakht, E. Baladi, L. Carlucci, and D. M. Proserpio (2017). Cryst. Eng. Comm 19, 6116.

    Article  CAS  Google Scholar 

  21. G. X. Jin, G. Y. Zhu, Y. Y. Sun, Q. X. Shi, L. P. Liang, H. Y. Wang, X. W. Wu, and J. P. Ma (2019). Inorg. Chem. 58, 2916.

    Article  CAS  Google Scholar 

  22. A. Raghuvanshi, M. Knorr, L. Knauer, C. Strohmann, S. Boullanger, V. Moutarlier, and L. Viau (2019). Inorg. Chem. 58, 5753.

    Article  CAS  Google Scholar 

  23. J. C. Wang, Q. K. Liu, J. P. Ma, F. Huang, and Y. B. Dong (2014). Inorg. Chem. 53, 10791.

    Article  CAS  Google Scholar 

  24. G. Jin, Y. Ji, T. Wang, Y. Sun, Y. Li, G. Zhu, and J. Ma (2019). Acta. Crystallogr. Sect. C 75, 1327.

    Article  CAS  Google Scholar 

  25. C.-W. Zhao, J.-P. Ma, Q.-K. Liu, Y. Yu, P. Wang, Y.-A. Li, K. Wang, and Y.-B. Dong (2013). Green. Chem. 15, 3150.

    Article  CAS  Google Scholar 

  26. G. M. Sheldrick (2008). Acta. Crystallogr. Sect. A 64, 112.

    Article  CAS  Google Scholar 

  27. J. Cao, X. Yan, W. He, X. Li, Z. Li, Y. Mo, M. Liu, and Y. B. Jiang (2017). J. Am. Chem. Soc. 139, 6605.

    Article  CAS  Google Scholar 

  28. K. L. Stevenson, M. M. Grush, and K. S. Kurtz (1990). Inorg. Chem. 29, 3150.

    Article  CAS  Google Scholar 

  29. R. D. Willett, G. Pon, and C. Nagy (2001). Inorg. Chem. 40, 4342.

    Article  CAS  Google Scholar 

  30. N.-X. Zhu, C.-W. Zhao, J. Yang, X.-R. Wang, J.-P. Ma, and Y.-B. Dong (2016). RSC. Adv. 6, 108645.

    Article  CAS  Google Scholar 

  31. Y.-B. Dong, M. D. Smith, and H. C. zur Loye (2000). Angew. Chem. Int. Ed. 39, 4271.

    Article  CAS  Google Scholar 

  32. X. L. Hu, C. Y. Sun, C. Qin, X. L. Wang, H. N. Wang, E. L. Zhou, W. E. Li, and Z. M. Su (2013). Chem. Commun. 49, 3564.

    Article  CAS  Google Scholar 

  33. J. J. Liu, Y. F. Guan, L. Li, Y. Chen, W. X. Dai, C. C. Huang, and M. J. Lin (2017). Chem. Commun. 53, 4481.

    Article  CAS  Google Scholar 

  34. A.-H. Sun, S.-D. Han, J. Pan, J.-H. Li, G.-M. Wang, and Z.-H. Wang (2017). Cryst. Growth. Des. 17, 3588.

    Article  CAS  Google Scholar 

  35. D. Zhang, Z.-Z. Xue, J. Pan, M.-M. Shang, Y. Mu, S.-D. Han, and G.-M. Wang (2018). Cryst. Growth. Des. 18, 7041.

    Article  CAS  Google Scholar 

  36. A. H. Sun, Q. Wei, A. P. Fu, S. D. Han, J. H. Li, and G. M. Wang (2018). Dalton. Trans. 47, 6965.

    Article  CAS  Google Scholar 

  37. A. H. Sun, J. Pan, S. D. Han, X. Y. Xue, Q. Wei, J. H. Li, and G. M. Wang (2017). Inorg. Chem. 56, 13785.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NSFC (51773207, 21574138, 21801213) of China and NSF (20192ACB20009) of Jiangxi Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaowei Zhao or Weiwei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, C., You, S. et al. A CuBr Metal–Organic Framework: From Two Dimensional Net to Quasi-Three Dimensional Frame Through Encapsulated Cu2Br2 Cluster. J Clust Sci 31, 1207–1212 (2020). https://doi.org/10.1007/s10876-019-01727-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01727-0

Keywords

Navigation