Skip to main content

Advertisement

Log in

Ru-Dye Grafted CuS and Reduced Graphene Oxide (CuS/rGO) Composite: An Efficient and Photo Tunable Electrode for Dye Sensitized Solar Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The CuS@reduced graphene oxide (CuS/RGO) hybrid nanocomposite was synthesized by facile hydrothermal method and used as a photoelectrode material in photovoltaic applications. In the hydrothermal route, RGO is formed by the reduction of GO with simultaneous formation of CuS/RGO nanocomposites. The CuS/RGO nanocomposites was investigated using powder XRD, TEM, HR-TEM, Raman, XPS, DRS UV–Vis spectroscopy, Photoluminescence (PL) measurements. XRD and TEM results suggest that CuS crystalline with individual spherical like homogeneous nanoparticles sizes in the range of 45–35 nm, which is distributed throughout the RGO sheets. We further construct the flexible photoelectrodes by using CuS and RGO and studied the photovoltaic performance. Photovoltaic parameters, such as short-circuit photocurrent density, open circuit voltage, fill factor and conversion efficiency were found to be 16 mA/cm2, 0.71 V, 70.1% and 7.81% respectively, for CuS/RGO photoelectrode. The improved photo conversion efficiency of CuS/RGO is due to enhancing the electronic injection ability and reducing the photogenerated charge recombination. These photovoltaic results indicate a simple methodology for the low cost and effortless synthesis of an alternative CuS/RGO photoelectrode in high performance photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Suganthi and A. A. Samuel (2012). Renew. Sustain. Energy. Rev.16, 1223.

    Article  Google Scholar 

  2. M. Z. Iqbal and S. Khan (2018). Sol. Energy160, 130.

    Article  CAS  Google Scholar 

  3. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Y. Lin, Y. Xie, and Y. Wei (2017). Chem. Soc. Rev.46, 5975.

    Article  CAS  Google Scholar 

  4. M. S. Dresselhaus and I. L. Thomas (2001). Nature414, 332.

    Article  CAS  Google Scholar 

  5. M. R. Narayan (2012). Renew. Sustain. Energy Rev.16, 208.

    CAS  Google Scholar 

  6. A. V. Shah, R. Platz, and H. Keppner (1995). Sol. Energy Mater Solar Cells38, 501.

    Article  CAS  Google Scholar 

  7. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson (2010). Chem. Rev.110, 6595.

    Article  CAS  Google Scholar 

  8. M. Sumathi, A. Prakasam, and P. M. Anbarasan (2019). J. Clust. Sci.30, 757.

    Article  CAS  Google Scholar 

  9. M. Yousefi, M. Sabet, M. Salavati-Niasari, and S. M. Hosseinpour-Mashkani (2012). J. Clust. Sci.23, 491.

    Article  CAS  Google Scholar 

  10. M. Yousefi, M. Sabet, M. Salavati-Niasari, and H. Emadi (2012). J. Clust. Sci.23, 511.

    Article  CAS  Google Scholar 

  11. M. Abdi-Jalebi, M. R. Mohammadi, and D. J. Fray (2014). J. Clust. Sci.25, 1029.

    Article  CAS  Google Scholar 

  12. Z. Zarghami, M. Ramezani, and K. Motevalli (2016). J. Clust. Sci.27, 1451.

    Article  CAS  Google Scholar 

  13. J. G. Radich, R. Dwyer, and P. V. J. Kamat (2011). Phys. Chem. Lett.2, 2453.

    Article  CAS  Google Scholar 

  14. Z. Yang, C. Chen, C. Liu, C. Li, and H. Chang (2011). Adv. Energy Mater.1, 259.

    Article  CAS  Google Scholar 

  15. Z. Yang, C. Chen, C. Liu, and H. Chang (2010). Chem. Commun.46, 5485.

    Article  CAS  Google Scholar 

  16. Z. Tachan, M. Shalom, I. Hod, S. Ruhle, and S. Tirosh (2011). Zaban. J. Phys. Chem. C115, 6162.

    Article  CAS  Google Scholar 

  17. J. Kundu, D. Pradhan, and A. C. S. Appl (2014). Mater. Interfaces.6, 1823.

    Article  CAS  Google Scholar 

  18. X. Jiang, Y. Xie, J. Lu, W. He, L. Zhu, and Y. Qian (2010). J. Mater. Chem.10, 2193.

    Article  Google Scholar 

  19. J. S. Chung and H. J. Sohn (2002). J. Power Sources.108, 226.

    Article  CAS  Google Scholar 

  20. A. B. F. Martinson, J. W. Elam, and M. J. Pellin (2009). Appl. Phys. Lett.94, 123107.

    Article  Google Scholar 

  21. M. Basu, A. K. Sinha, M. Pradnan, S. Sarkar, Y. Negishi, and T. Pal (2010). Environ. Sci. Technol.44, 6313.

    Article  CAS  Google Scholar 

  22. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff (2006). Nature.442, 282.

    Article  CAS  Google Scholar 

  23. D. A. Brownson and C. E. Banks (2010). Analyst.135, 2768.

    Article  CAS  Google Scholar 

  24. W. S. Hummers and R. E. Offeman (1958). J. Am. Chem. Soc.80, 1339.

    Article  CAS  Google Scholar 

  25. S. Drewniak, R. Muzyka, A. Stolarczyk, T. Pustelny, M. Kotyczka-Morańska, and M. Setkiewicz (2016). Sensors.16, 103.

    Article  Google Scholar 

  26. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, and K. Thavamani (2014). J. Mater. Sci. Mater. Electron.25, 730.

    Article  CAS  Google Scholar 

  27. H. C. Tao, X. L. Yang, L. L. Zhang, and S. B. Ni (2014). J. Phys. Chem. Solids.75, 1205.

    Article  CAS  Google Scholar 

  28. L. Fei, Q. L. Lin, B. Yuan, G. Chen, P. Xie, Y. L. Li, Y. Xu, S. G. Deng, S. Smirnov, and H. M. Luo (2013). ACS Appl. Mater. Interfaces.5, 5330.

    Article  CAS  Google Scholar 

  29. M. Parthibavarman, S. Sathishkumar, M. Jayashree, and R. BoopathiRaja (2019). J. Clust. Sci.30, 351.

    Article  CAS  Google Scholar 

  30. M. Parthibavarman, S. Sathishkumar, S. Prabhakaran, M. Jayashree, and R. BoopathiRaja (2018). J. Iran. Chem. Soc.15, 2789.

    Article  CAS  Google Scholar 

  31. J. Zhou, F. Zhao, X. Wang, Z. Li, Y. Zhang, and L. Yang (2006). J. Lumin.237, 237.

    Article  Google Scholar 

  32. X. S. Hu, Y. Shen, Y. T. Zhang, and J. J. Nie (2017). J. Phys. Chem. Solid.103, 201.

    Article  CAS  Google Scholar 

  33. M. Saranya, R. Ramachandran, P. Kollu, S. K. Jeong, and A. N. Grace (2015). RSC Adv.5, 15831.

    Article  CAS  Google Scholar 

  34. J. Zhao, D. Liu, C. Gu, M. Zhu, S. O. Ryu, and J. Huang (2018). Mater. Chem. Phys.217, 102.

    Article  CAS  Google Scholar 

  35. Z. Li, F. Gong, G. Zhou, and Z. S. Wang (2013). J. Phys. Chem. C.117, 6561.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. SivaKarthik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, K.K., SivaKarthik, P. Ru-Dye Grafted CuS and Reduced Graphene Oxide (CuS/rGO) Composite: An Efficient and Photo Tunable Electrode for Dye Sensitized Solar Cells. J Clust Sci 31, 401–407 (2020). https://doi.org/10.1007/s10876-019-01653-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01653-1

Keywords

Navigation