Skip to main content
Log in

A Systematic Study of Cu Nanospheres Embedded in Non-ionic Surfactant-Based Vesicle: Photocatalytic Efficiency and In Vivo Imaging Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, for the first time nanoparticles were synthesized and encapsulated in non-ionic surfactant-based vesicle (biology and chemistry). The non-ionic surfactant-based vesicle is formed mostly by non-ionic surfactant and cholesterol incorporation as an excipient by green capping agent. We researched a novel processing route for produce Cu nanospheres encapsulated in a non-ionic surfactant-based vesicle by glucose as a green capping reductant with microwave assisted reverse micelle method. The effect of glucose concentration and microwave power on the morphology, particle size, distribution and in vitro photoluminescence spectroscopy experiments of nanoparticles entrapped in the non-ionic surfactant-based vesicles were investigated. The synthesis parameters in this study were designed by Taguchi technique and various factors such as glucose concentration, temperature, microwave power and interaction between these factors were studied. The metal nanostructure with photocatalytic activity act as an emerging, non-invasive therapeutic strategy that involves photosensitizer drugs and external light for the treatment of cancer. The products were characterized by XRD, SEM, TEM, DLS, TGA and UV–Vis. The current study points out a successful example of using Cu nanospheres embedded in non-ionic surfactant-based vesicle as a new and novel nanomedicine material for in vivo imaging and the photocatalytic efficiency of methylene blue.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Ag Seleci, M. Seleci, J.-G. Walter, F. Stahl, and T. Scheper (2016). Niosomes as nanoparticular drug carriers: fundamentals and recent applications. J. Nanomater. 43, 243–256.

    Google Scholar 

  2. D. Akhilesh, K. Bini, and J. Kamath (2012). Review on span-60 based non-ionic surfactant vesicles (niosomes) as novel drug delivery. Int. J. Res. Pharm. Biomed. Sci. 3, 6–12.

    CAS  Google Scholar 

  3. Z. S. Bayindir and N. Yuksel (2010). Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J. Pharm. Sci. 99, 2049–2060.

    Article  CAS  PubMed  Google Scholar 

  4. H. Ai, S. A. Jones, and Y. M. Lvov (2003). Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem. Biophys. 39, 23–35.

    Article  CAS  PubMed  Google Scholar 

  5. R. Esfand and D. A. Tomalia (2001). Poly (amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6, 427–436.

    Article  CAS  PubMed  Google Scholar 

  6. K. Grage, A. C. Jahns, N. Parlane, R. Palanisamy, I. A. Rasiah, J. A. Atwood, and B. H. Rehm (2009). Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10, 660–669.

    Article  CAS  PubMed  Google Scholar 

  7. V. P. Torchilin (2007). Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24, 1–13.

    Article  CAS  PubMed  Google Scholar 

  8. S. Honary and F. Zahir (2013). Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop. J. Pharm. Res. 12, 265–273.

    Google Scholar 

  9. N. S. Thakur, G. Patel, V. Kushwah, S. Jain, and U. C. Banerjee (2018). Self assembled gold nanoparticle-lipid nanocomposites for on-demand delivery, tumor accumulation, and combined photothermal-photodynamic therapy. ACS Appl. Bio Mater. 23, 678–789.

    Google Scholar 

  10. S. E. Skrabalak, J. Chen, L. Au, X. Lu, X. Li, and Y. Xia (2007). Gold nanocages for biomedical applications. Adv. Mater. 19, 3177–3184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, and X. Jing (2003). Biodegradable electrospun fibers for drug delivery. J. Control. Release 92, 227–231.

    Article  CAS  PubMed  Google Scholar 

  12. X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. Weiss (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Ahmed and A. Ghanem (2014). Chiral β-cyclodextrin functionalized polymer monolith for the direct enantioselective reversed phase nano liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A 1345, 115–127.

    Article  CAS  PubMed  Google Scholar 

  14. M. Ahmed, M. M. A. Yajadda, Z. J. Han, D. Su, G. Wang, K. K. Ostrikov, and A. Ghanem (2014). Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A 1360, 100–109.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, and R. S. Ruoff (2010). Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48, 2118–2122.

    Article  CAS  Google Scholar 

  16. L. Lv, X. Bian, J. Zhou, G. Zhu, P. Liu, X. Chen, and Q. Liu (2010). Synthesis of NiFe2O4 nanocrystalline with various size by hydrothermal method. J. Synth. Cryst. 4, 31–48.

    Google Scholar 

  17. A. R. Karimi, Z. Alimohammadi, J. Azizian, A. A. Mohammadi, and M. J. Mohammadizadeh (2006). Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO4 support. Catal. Commun. 7, 728–732.

    Article  CAS  Google Scholar 

  18. P. R. Arya, P. Jha, and A. K. Ganguli (2003). Synthesis, characterization and dielectric properties of nanometer-sized barium strontium titanates prepared by the polymeric citrate precursor method. J. Mater. Chem. 13, 415–423.

    Article  CAS  Google Scholar 

  19. D. Macwan, P. N. Dave, and S. Chaturvedi (2011). A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46, 3669–3686.

    Article  CAS  Google Scholar 

  20. P. V. Kumar, S. Pammi, P. Kollu, K. Satyanarayana, and U. Shameem (2014). Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod. 52, 562–566.

    Article  CAS  Google Scholar 

  21. R. Riahi-Madvaar, M. A. Taher, and H. Fazelirad (2017). Green and microwave synthesis of SrAl2O4 nanoparticles by application of pomegranate juice: study and characterization. Appl. Nanosci. 7, 913–917.

    Article  CAS  Google Scholar 

  22. M. N. Nadagouda, T. F. Speth, and R. S. Varma (2011). Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res. 44, 469–478.

    Article  CAS  PubMed  Google Scholar 

  23. H. Ammar, M. Haider, M. Ibrahim, and N. El Hoffy (2017). In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration. Drug Deliv. 24, 414–421.

    Article  CAS  PubMed  Google Scholar 

  24. A. Hussain, A. Samad, S. Singh, M. Ahsan, M. Haque, A. Faruk, and F. Ahmed (2016). Nanoemulsion gel-based topical delivery of an antifungal drug: in vitro activity and in vivo evaluation. Drug Deliv. 23, 642–657.

    Article  CAS  PubMed  Google Scholar 

  25. J. Somagoni, C. H. Boakye, C. Godugu, A. R. Patel, H. A. M. Faria, V. Zucolotto, and M. Singh (2014). Nanomiemgel-A novel drug delivery system for topical application-in vitro and in vivo evaluation. PLoS ONE 9, 115–122.

    Article  CAS  Google Scholar 

  26. M. Jin, G. He, H. Zhang, J. Zeng, Z. Xie, and Y. Xia (2011). Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem. Int. Ed. 50, 10560–10564.

    Article  CAS  Google Scholar 

  27. C. Dufes, F. Gaillard, I. F. Uchegbu, A. G. Schätzlein, J.-C. Olivier, and J.-M. Muller (2004). Glucose-targeted niosomes deliver vasoactive intestinal peptide (VIP) to the brain. Int. J. Pharm. 285, 77–85.

    Article  CAS  PubMed  Google Scholar 

  28. S. Moghassemi and A. Hadjizadeh (2014). Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J. Control. Release 185, 22–36.

    Article  CAS  PubMed  Google Scholar 

  29. Y. A. Youssef, Y. Beauchamp, and M. Thomas (1994). Comparison of a full factorial experiment to fractional and Taguchi designs in a lathe dry turning operation. Comput. Ind. Eng. 27, 59–62.

    Article  Google Scholar 

  30. K. E. Taylor, R. J. Stouffer, and G. A. Meehl (2012). An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498.

    Article  Google Scholar 

  31. S.-Y. Yin, W.-C. Wei, F.-Y. Jian, and N.-S. Yang (2013). Medicine A: therapeutic applications of herbal medicines for cancer patients. Evid. Based Complement. Altern. Med. 13, 56–68.

    Article  Google Scholar 

  32. C. Amaral, M. R. T. Toloi, L. D. Vasconcelos, M. J. V. Fonseca, G. Correia-da-Silva, and N. J. Teixeira (2017). The role of soybean extracts and isoflavones in hormone-dependent breast cancer: aromatase activity and biological effects. Food Funct. 8, 3064–3074.

    Article  CAS  PubMed  Google Scholar 

  33. B. Gerber, C. Scholz, T. Reimer, V. Briese, and W. J. Janni (2006). Complementary and alternative therapeutic approaches in patients with early breast cancer: a systematic review. Breast Cancer Res. Treat. 95, 199–209.

    Article  CAS  PubMed  Google Scholar 

  34. J. Tavakoli, S. Miar, M. M. Zadehzare, and H. J. Akbari (2012). Evaluation of effectiveness of herbal medication in cancer care: a review study. Iran. J. Cancer Prev. 5, 144–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Salavati-Niasari and F. Davar (2009). Synthesis of copper and copper (I) oxide nanoparticles by thermal decomposition of a new precursor. Mater. Lett. 63, 441–443.

    Article  CAS  Google Scholar 

  36. H. Zhang, Z. Ji, T. Xia, H. Meng, C. Low-Kam, R. Liu, S. Pokhrel, S. Lin, X. Wang, and Y.-P. Liao (2012). Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6, 4349–4368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. G. Ren, D. Hu, E. W. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 33, 587–590.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to council of Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

Funding

This work was supported by the Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ranjbar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Human and Animal Rights

This article does not contain any studies with human participants performed by any of the authors. Animals purchased from Animal care center were feeded and raised according to the Institutional Animal Care and Use Committee (IACUC) protocol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samareh Fekri, H., Ranjbar, M. & Pardakhty, A. A Systematic Study of Cu Nanospheres Embedded in Non-ionic Surfactant-Based Vesicle: Photocatalytic Efficiency and In Vivo Imaging Study. J Clust Sci 30, 561–570 (2019). https://doi.org/10.1007/s10876-019-01507-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01507-w

Keywords

Navigation