Skip to main content
Log in

Synergistic Effect of POMCPs and PPy for Enhancing Visible-Light Photocatalytic Activity and High Quantum Yields

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new Keggin-type POMs based Cu-bib (bib = 1,4-bis(imidazol-1-ylmethyl)benzene) coordination polymer with appropriate surface areas and rich active sites, [Cu(bib)][H3PW12O40]·(Hbib)2·2H2O (Cu(bib)PW12), was successfully synthesized and structurally characterized. To improve the photocatalytic activity of Cu(bib)PW12, polypyrrole (PPy) was loaded on its surface through a facile in situ oxidation polymerization process. Under the irradiation of visible light, the composites (Cu(bib)PW12/PPy (A and B) exhibited excellent photocatalytic activities for the degradation of methylene blue than pure Cu(bib)PW12 crystal, PPy and their mechanically mixing (Cu(bib)PW12/PPy (A′ and B′), respectively. Catalytic mechanism study indicates that the enhancement of photocatalytic activities of Cu(bib)PW12/PPy can be attributed to the higher separation efficiency of the photogenerated electron–hole pair on the interface of PPy and Cu(bib)PW12. These results suggest that loading PPy onto the surface of POMCPs would be a feasible strategy to enhance the photocatalytic activity of POMCPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga (2001). Science 293, 269.

    Article  CAS  PubMed  Google Scholar 

  2. S. Kohtani, M. Tomohiro, K. Tokumura, and R. Nakagaki (2005). Appl. Catal. B 58, 265.

    Article  CAS  Google Scholar 

  3. Y. Cong, J. L. Zhang, F. Chen, and M. Anpo (2007). J. Phys. Chem. C 111, 6976.

    Article  CAS  Google Scholar 

  4. S. Kohtani, M. Koshiko, A. Kudo, K. Tokumura, Y. Ishigaki, A. Toriba, K. Hayakawa, and R. Nakagaki (2003). Appl. Catal. B 46, 573.

    Article  CAS  Google Scholar 

  5. X. H. Lu, S. L. Xie, H. Yang, Y. X. Tong, and H. B. Ji (2014). Chem. Soc. Rev. 43, 7581.

    Article  CAS  PubMed  Google Scholar 

  6. D. F. Al-Ekabi and H. Hidaka (eds.) Photocatalytic Purification and Treatment of Water and Air (Elsevier, Amsterdam, 1993).

    Google Scholar 

  7. W. Choi, J. Y. Ko, H. Park, and J. S. Chung (2001). Appl. Catal. B Environ. 31, 209.

    Article  CAS  Google Scholar 

  8. H. Lee and W. Choi (2002). Environ. Sci. Technol. 36, 3872.

    Article  CAS  PubMed  Google Scholar 

  9. A. Müller, F. Peters, M. T. Pope, and D. Gatteschi (1998). Chem. Rev. 98, 239.

    Article  PubMed  Google Scholar 

  10. S. G. Mitchell, C. Streb, H. N. Miras, T. Boyd, D. L. Long, and L. Cronin (2010). Nat. Chem. 2, 308.

    Article  CAS  PubMed  Google Scholar 

  11. D. Y. Du, J. S. Qin, S. L. Li, Z. M. Su, and Y. Q. Lan (2014). Chem. Soc. Rev. 43, 4615.

    Article  CAS  PubMed  Google Scholar 

  12. X. L. Wang, N. Li, A. X. Tian, J. Ying, T. J. Li, X. L. Lin, and Y. Yang (2014). Inorg. Chem. 53, 7118.

    Article  CAS  PubMed  Google Scholar 

  13. H. Y. An, E. B. Wang, Xiao, Y. G. Li, Z. M. Su, and L. Xu (2006). Angew. Chem. Int. Ed. 45, 904.

    Article  CAS  Google Scholar 

  14. X. Y. Yang, P. P. Zhu, J. Ren, Y. H. Chen, X. Li, J. Q. Sha, and J. Z. Jaing (2019). Chem. Commun.. https://doi.org/10.1039/c8cc08559e.

    Article  Google Scholar 

  15. J. Q. Sha, P. P. Zhu, X. Y. Yang, N. Sheng, J. S. Li, L. J. Sun, and H. Yan (2016). CrystEngComm 18, 7049.

    Article  CAS  Google Scholar 

  16. B. Liu, J. Yang, G. C. Yang, and J. F. Ma (2013). Inorg. Chem. 52, 84.

    Article  CAS  PubMed  Google Scholar 

  17. H. Zhang, J. Yang, Y. Y. Liu, S. Y. Song, X. L. Liu, and J. F. Ma (2016). Dyes Pigments 133, 189.

    Article  CAS  Google Scholar 

  18. A. Dolbecq, P. Mialane, B. Keita, and L. Nadjo (2012). J. Mater. Chem. 22, 24509.

    Article  CAS  Google Scholar 

  19. E. Papaconstantinou (1989). Chem. Soc. ReV. 18, 1.

    Article  CAS  Google Scholar 

  20. R. Cervini, Y. Cheng, and G. Simon (2004). J. Phys. D Appl. Phys. 37, 13.

    Article  CAS  Google Scholar 

  21. X. M. Feng, H. P. Huang, and Q. Q. Ye (2007). J. Phys. Chem. C 111, 8463.

    Article  CAS  Google Scholar 

  22. X. X. Yuan, X. Zeng, and H. J. Zhang (2010). J. Am. Chem. Soc. 132, 1754.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Lei, X. R. Qian, and J. Shen (2012). Ind. Eng. Chem. Res. 51, 10408.

    Article  CAS  Google Scholar 

  24. B. Wang, C. Li, J. F. Pang, X. T. Qing, J. P. Zhai, and Q. Li (2012). Appl. Surf. Sci. 258, 9989.

    Article  CAS  Google Scholar 

  25. F. Deng, L. J. Min, X. B. Luo, S. L. Wu, and S. L. Luo (2013). Nanoscale 5, 8703.

    Article  CAS  PubMed  Google Scholar 

  26. C. Xu, J. Sun, and L. Gao (2011). J. Mater. Chem. 21, 11253.

    Article  CAS  Google Scholar 

  27. X. X. Xu, X. Gao, T. T. Lu, X. X. Liu, and X. L. Wang (2015). J. Mater. Chem. A 3, 198.

    Article  CAS  Google Scholar 

  28. X. X. Xu, X. Gao, Z. P. Cui, X. X. Liu, and X. Zhang (2014). Dalton Trans. 43, 13424.

    Article  CAS  PubMed  Google Scholar 

  29. G. M. Sheldrick SHELX-97, Program for the Solution and Refinement of Crystal Structures (University of Göttingen, Göttingen, 1997).

    Google Scholar 

  30. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B Struct. Sci. 41, 244.

    Article  Google Scholar 

  31. J. Q. Sha, H. Y. Liu, J. Peng, C. Wang, Y. G. Lv, and P. P. Zhang (2010). Z. Naturforsch. 65b, 135.

    Article  Google Scholar 

  32. J. Q. Sha, X. Y. Yang, L. J. Sun, S. X. Li, N. Sheng, and J. S. Li (2017). J. Coord. Chem. 70, 392.

    Article  CAS  Google Scholar 

  33. S. X. Min, F. Wang, and Y. Q. Han (2007). J. Mater. Sci. 42, 9966.

    Article  CAS  Google Scholar 

  34. J. H. Wei, Q. Zhang, Y. Liu, R. Xiong, C. X. Pang, and J. Shi (2011). J. Nanopart. Res. 15, 3157.

    Article  CAS  Google Scholar 

  35. T. Xu, Y. Cai, and K. E. O’Shea (2007). Environ. Sci. Technol. 41, 5471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Y. Lu, H. Yu, S. Chen, X. Quan, and H. Zhao (2012). Environ. Sci. Technol. 46, 1724.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, and X. Fu (2012). J. Phys. Chem. C 116, 5764.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from students’ research and innovative experiment program of Jining University in CX 201838, CX201829, CX201815.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, F., Li, S., Liu, C. et al. Synergistic Effect of POMCPs and PPy for Enhancing Visible-Light Photocatalytic Activity and High Quantum Yields. J Clust Sci 30, 553–559 (2019). https://doi.org/10.1007/s10876-019-01506-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01506-x

Keywords

Navigation