Skip to main content
Log in

Synthesis, Characterization, DFT Calculations and Non-linear Optical Properties of a New Organic–Inorganic Arsenate

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This paper undertakes the synthesis by slow evaporation method at room temperature of a new organic–inorganic hybrid material with the general formula [C12H13N2O]H2AsO4. The newly developed hybrid is characterized by X-ray single crystal diffraction, Infrared, Raman spectroscopy and density functional theory (DFT) calculations. At ambient temperature, this compound crystallizes in the non-centrosymmetric space group P212121 of the orthorhombic system. The structural arrangement is formed by infinite anionic chains extending parallel to the direction [100]. The organic entities are linked to these chains by N–H···O type hydrogen bonds which play an important role in the cohesion of the one-dimensional network. The optimized molecular structure, vibrational spectra and the optical properties were calculated by the DFT method using the B3LYP function with the LanL2DZ basis set. The vibrational wavenumbers were evaluated for this compound by using transferable scale factor. The first hyperpolarizability value βtot of the title compound is equal to 15.94 × 10−31 esu. Hence, the large β value calculated by the B3LYP method shows that the studied compound is a good NLO material and is suitable for future non-linear optical studies. The HOMO–LUMO energy gap and other related molecular properties are going to be discussed and reported later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Matei, C. Constantinescu, B. Mitu, M. Filipescu, V. Ion, I. Ionita, S. Brajnicov, A. P. Alloncle, Ph. Delaporte, A. Emandi, and M. Dinescu (2015). Appl. Surf. Sci. 336, 200–205.

    Article  CAS  Google Scholar 

  2. S. SoYoon, A. Ramadoss, B. Saravanakumar, and S. Jae Kim (2014). J. Electroanal. Chem. 717, 90–95.

    Article  CAS  Google Scholar 

  3. V. Ion, A. Matei, C. Constantinescu, I. Ionita, M. Marinescu, M. Dinescu, and A. Emandi (2015). Mater. Sci. Semicond. Proc. 36, 78–83.

    Article  CAS  Google Scholar 

  4. G. Ray and B. Kumar (2015). Mater. Lett. 143, 105–107.

    Article  CAS  Google Scholar 

  5. Z. Kotler, R. Hierle, D. Josse, J. Zyss, and R. Masse (1992). J. Opt. Soc. Am. B 9, 534–547.

    Article  CAS  Google Scholar 

  6. N. Horiuchi, F. Lefaucheux, A. Ibanez, D. Josse, and J. Zyss (2002). J. Opt. Soc. Am. B 19, 1830–1838.

    Article  CAS  Google Scholar 

  7. S. Manivannan, S. Dhanuskodi, K. Kirschbaum, and S. K. Tiwari (2005). Cryst. Growth Des. 5, 1463–1468.

    Article  CAS  Google Scholar 

  8. W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, and B. Sahraoui (2008). Adv. Mater. 20, 1013–1017.

    Article  CAS  Google Scholar 

  9. D. Josse, R. Heirle, I. Ledoux, and J. Zyss (1988). Appl. Phys. Lett. 53, 2251–2253.

    Article  CAS  Google Scholar 

  10. B. F. Levine, C. G. Bethea, C. D. Thermond, R. T. Lynch, and J. L. Bernstein (1979). J. Appl. Phys. 50, 2523–2527.

    Article  CAS  Google Scholar 

  11. R. Hierle, J. Badan, and J. Zyss (1984). J. Cryst. Growth. 69, 545–554.

    Article  CAS  Google Scholar 

  12. K. Bouchouit, E. E. Bendeif, H. EL Ouazzani, S. Dahaoui, C. Lecomte, N. Benalicherif, and B. Sahraoui (2010). J. Chem. Phys. 375, 1–7.

    CAS  Google Scholar 

  13. N. Sudharsana, G. Subramanian, V. Krishnakumar, and R. Nagalakshm (2012). J. Spectrochim. Acta. A 97, 798–805.

    Article  CAS  Google Scholar 

  14. U. Meir, M. Bosch, C. Boshard, and P. Gunter (2000). Synth. Met. 109, 19–22.

    Article  Google Scholar 

  15. G. M. Sheldrick SHELXS-97 Program for the Solution of Crystal Structures (University of Göttingen, Germany, 1997).

    Google Scholar 

  16. G. M. Sheldrick SHELXL-97 Program for Crystal Structure Refinement (University of Göttingen, Germany, 1997).

    Google Scholar 

  17. L. J. Farrugia (1997). J Appl. Cryst. 30, 565–566.

    Article  CAS  Google Scholar 

  18. K. Brandenburg, Diamond Version 2.0 Crystal Impact GbR, Bonn, Germany, 1998.

  19. N. Zhanpelsov, M. Matsuoka, H. Yamashite, and M. Anpo (1998). J. Phys. Chem. B 102, 6915–6920.

    Article  Google Scholar 

  20. N. Niclasc, M. Dolg, H. Stoll, and H. Preuss (1995). J. Chem. Phys. 102, 8942–8952.

    Article  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.

  22. National Institute of Standards and Technology (NIST). Computational Chemistry Comparison and Benchmark Database: Precomputed Vibrational Scaling Factors. http://cccbdb.nist.gov/vibscalejust.asp.

  23. A. Chtioui, L. Benhamada, S. Belghith, and A. Jouini (2010). Mater. Res. Bull. 45, 1692–1695.

    Article  CAS  Google Scholar 

  24. A. Oueslati, A. Rayes, C. Ben Nasr, and F. Lefebvre (2005). Mater. Res. Bull. 40, 1680–1689.

    Article  CAS  Google Scholar 

  25. I. Dhouib, H. Feki, P. Guionneau, T. Mhiri, and Z. Elaoud (2014). Spectrochim. Acta. A 131, 274–281.

    Article  CAS  Google Scholar 

  26. K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A; Theory and Applications in Inorganic Chemistry (Wiley, New York, 1986), p. 202.

    Google Scholar 

  27. M. Karabacak, Z. Cinar, M. Kurt, S. Sudha, and N. Sundaraganesan (2012). Spectrochim. Acta. A 85, 179–189.

    Article  CAS  Google Scholar 

  28. G. Varsanyi Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vols. I and II (Academic Kiaclo, Budapest, 1973).

    Google Scholar 

  29. L. J. Bellamy The Infrared Spectra of Complex Molecules, 3rd ed (Wiley, New York, 1975).

    Book  Google Scholar 

  30. H. Alyar, Z. Kantarci, M. Bahat, and E. Kasap (2007). J. Mol. Struct. 834, 516–520.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Soukrata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soukrata, S., Dammak, T., Mhiri, T. et al. Synthesis, Characterization, DFT Calculations and Non-linear Optical Properties of a New Organic–Inorganic Arsenate. J Clust Sci 29, 1051–1060 (2018). https://doi.org/10.1007/s10876-018-1405-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1405-3

Keywords

Navigation