Skip to main content
Log in

Encapsulation of Nickel Nanoparticles and Homopoly(Vinylsulfonic Acid) in Mesoporous Carbon CMK-3 as an Acid–Metal Bifunctional Catalyst for Tandem Reductive Amination

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Facile and clean transformation for synthesizing secondary arylamines through one-pot reductive amination of aniline has been catalyzed by supported nickel nanocluster and poly(vinylsulfonic acid) into mesoporous carbon CMK-3 (Ni/PVSA/CMK-3) as a bi-functional metal/acid heterogeneous catalyst. Vinylsulfonic acid has been polymerized in CMK-3 pores by an in situ method. The process was run in the presence of NaBH4 at room temperature, in a short reaction time, and without secondary product. Various characterization techniques, including FT-IR, XRD, TG, BET, SEM, TEM, DRS-UV, and AAS were employed to disclose the physical and chemical properties of the catalyst. Reaction results demonstrate that the optimized Ni/PVSA/CMK-3 catalyst shows comparable catalytic performance thanks to the nickel metals and the acidic nature of polymer incorporated in mesoporous channels of CMK-3. Besides being eco-friendly (using water as solvent), the method has several advantages such as simple work-up procedure and moderate to high-yield. This catalyst was easily filtered and reused without noticeable loss of activity after 10 runs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Gomez, J. A. Peters, and T. Maschmeyer (2002). Adv. Synth. Catal. 344, 1037.

    Article  CAS  Google Scholar 

  2. E. W. Baxter and A. B. Reitz (2004). Org. React. 59, 1.

    Google Scholar 

  3. A. F. Abdel-Magid and S. J. Mehrman (2006). Org. Process Res. Dev. 10, 971.

    Article  CAS  Google Scholar 

  4. Y. Z. Chen, Y. X. Zhou, H. Wang, J. Lu, T. Uchida, Q. Xu, S. H. Yu, and H. L. Jiang (2015). ACS Catal. 5, 2062.

    Article  CAS  Google Scholar 

  5. M. Nasrollahzadeh and S. M. Sajadi (2016). J. Colloid Interface Sci. 464, 147.

    Article  CAS  PubMed  Google Scholar 

  6. J. W. Park and Y. K. Chung (2015). ACS Catal. 5, 4846.

    Article  CAS  Google Scholar 

  7. C. C. Lee and S. T. Liu (2011). Chem. Commun. 47, 6981.

    Article  CAS  Google Scholar 

  8. M. H. Valkenberg and W. F. Holderich (2002). Catal. Rev. 44, 321.

    Article  CAS  Google Scholar 

  9. Q. Zhang, S. S. Li, M. M. Zhu, Y. M. Liu, H. Y. He, and Y. Cao (2016). Green Chem. 18, 2507.

    Article  CAS  Google Scholar 

  10. A. Saha and B. Ranu (2008). J. Org. Chem. 73, 6867.

    Article  CAS  PubMed  Google Scholar 

  11. A. Rahman and S. B. Jonnalagadda (2008). Catal. Lett. 123, 264.

    Article  CAS  Google Scholar 

  12. R. Rajesh and R. Venkatesan (2012). J. Mol. Catal. A Chem. 359, 88.

    Article  CAS  Google Scholar 

  13. F. Alonso, P. Riente, and M. Yus (2008). Synlett 9, 1289.

    Article  CAS  Google Scholar 

  14. F. Alonso, P. Riente, and M. Yus (1998). Tetrahedron 54, 1921.

    Article  CAS  Google Scholar 

  15. D. Shah and H. Kaur (2014). J. Mol. Catal. A Chem. 381, 70.

    Article  CAS  Google Scholar 

  16. L. F. Giraldo, B. L. López, L. Pérez, S. Urrego, L. Sierra, and M. Mesa (2007). Macromol. Symp. 258, 129.

    Article  CAS  Google Scholar 

  17. O. Mazaheri and R. J. Kalbasi (2015). RSC Adv. 5, 34398.

    Article  CAS  Google Scholar 

  18. S. K. Jain, R. J. M. Pellenq, K. E. Gubbins, and X. Peng (2017). Langmuir 33, 2109.

    Article  CAS  PubMed  Google Scholar 

  19. A. Eftekhari and Z. Fan (2017). Mater. Chem. Front. 1, 1001.

    Article  CAS  Google Scholar 

  20. M. Choi and R. Ryoo (2003). Nat. Mater. 2, 473.

    Article  CAS  PubMed  Google Scholar 

  21. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki (2000). J. Am. Chem. Soc. 122, 10712.

    Article  CAS  Google Scholar 

  22. M. Colilla, F. Balas, M. Manzano, and M. Vallet-Regí (2007). Chem. Mater. 19, 3099.

    Article  CAS  Google Scholar 

  23. R. J. Kalbasi and O. Mazaheri (2016). New J. Chem. 40, 9627.

    Article  CAS  Google Scholar 

  24. J. He, K. Ma, J. Jin, Z. Dong, J. Wang, and R. Li (2009). Microporous Mesoporous Mater. 121, 173.

    Article  CAS  Google Scholar 

  25. T. Okayasu, K. Saito, H. Nishide, and M. T. W. Hearn (2009). Chem. Commun. 0, 4708.

    Article  CAS  Google Scholar 

  26. M. Erkartal, H. Usta, M. Citir, and U. Sen (2016). J. Membr. Sci. 499, 156.

    Article  CAS  Google Scholar 

  27. D. Li, J. Li, D. Mao, H. Wen, Y. Zhou, and J. Wang (2017). Mater. Chem. Phys. 189, 118.

    Article  CAS  Google Scholar 

  28. D. D. Jiang, Q. Yao, M. A. McKinney, and C. A. Wilkie (1999). Polym. Degrad. Stab. 63, 423.

    Article  CAS  Google Scholar 

  29. K. H. Wu, Y. R. Wang, and W. H. Hwu (2003). Polym. Degrad. Stab. 79, 195.

    Article  CAS  Google Scholar 

  30. R. J. Kalbasi and N. Mosaddegh (2011). J. Solid State Chem. 184, 3095.

    Article  CAS  Google Scholar 

  31. S. Chytil, W. R. Glomm, E. Vollebekk, H. Bergem, J. Walmsley, J. Sjoblom, and E. A. Blekkan (2005). Microporous Mesoporous Mater. 86, 198.

    Article  CAS  Google Scholar 

  32. H. Song, R. Rioux, J. D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P. Yang, and G. A. Somorjai (2006). J. Am. Chem. Soc. 128, 3027.

    Article  CAS  PubMed  Google Scholar 

  33. P. Dibandjo, F. Chassagneux, L. Bois, C. Sigala, and P. Miele (2005). J. Mater. Chem. 15, 1917.

    Article  CAS  Google Scholar 

  34. D. Brühwiler and H. Frei (2003). J. Phys. Chem. B. 107, 8547.

    Article  CAS  Google Scholar 

  35. S. Kim, B. K. Yoo, K. Chun, W. Kang, J. Choo, M. S. Gong, and S. W. Joo (2005). J. Mol. Catal. A Chem. 226, 231.

    Article  CAS  Google Scholar 

  36. R. Jana, T. P. Pathak, and M. S. Sigman (2011). Chem. Rev. 111, 1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. E. Levin, E. Ivry, C. E. Diesendruck, and N. G. Lemcoff (2015). Chem. Rev. 115, 4607.

    Article  CAS  PubMed  Google Scholar 

  38. H. Wena, K. Yao, Y. Zhang, Z. Zhou, and A. Kirschning (2009). Catal. Commun. 19, 1207.

    Article  CAS  Google Scholar 

  39. O. Metin and S. Ozkar (2008). J. Mol. Catal. A Chem. 295, 39.

    Article  CAS  Google Scholar 

  40. R. J. Kalbasi and F. Zamani (2014). RSC Adv. 4, 7444.

    Article  CAS  Google Scholar 

  41. R. J. Kalbasi, N. Mosaddegh, and A. Abbaspourrad (2012). Appl. Catal. A Gen. 78, 423–424.

    Google Scholar 

  42. R. J. Kalbasi and O. Mazaheri (2015). Catal. Commun. 69, 86.

    Article  CAS  Google Scholar 

  43. M. A. Harrad, B. Boualy, L. El Firdoussi, A. Mehdi, C. Santi, S. Giovagnoli, M. Nocchetti, and M. Ait Ali (2013). Catal. Commun. 32, 92.

    Article  CAS  Google Scholar 

  44. Y. Zhai, Y. Dou, X. Liu, S. S. Park, C. S. Ha, and D. Zhao (2011). Carbon 49, 545.

    Article  CAS  Google Scholar 

  45. S. E. Bozbag, L. C. Zhang, M. Aindow, and C. Erkey (2012). J. Supercrit. Fluids 66, 265.

    Article  CAS  Google Scholar 

  46. N. Uday Kumar, B. Sudhakar Reddy, V. Prabhakar Reddy, and R. Bandichhor (2012). Tetrahedron Lett. 53, 4354.

    Article  CAS  Google Scholar 

  47. R. P. Tripathi, S. S. Verma, J. Pandey, and V. K. Tiwari (2008). Curr. Org. Chem. 12, 1093.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Javad Kalbasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javad Kalbasi, R., Parishani, P. & Mazaheri, O. Encapsulation of Nickel Nanoparticles and Homopoly(Vinylsulfonic Acid) in Mesoporous Carbon CMK-3 as an Acid–Metal Bifunctional Catalyst for Tandem Reductive Amination. J Clust Sci 29, 561–575 (2018). https://doi.org/10.1007/s10876-018-1366-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1366-6

Keywords

Navigation