Skip to main content
Log in

A Colorimetric Selective Sensing Probe for Calcium Ions with Tunable Dynamic Ranges Using Glutathione Modified Gold Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We have obtained a kind of simple and highly effective method for detection of calcium ions based on glutathione functionalized gold nanoparticles (GSH-GNPs) in this article. The GSH-GNPs can be induced to aggregate immediately in the presence of calcium ions that can be detected by colorimetric response of GNPs monitored by a UV–vis spectrophotometer or even naked eyes, and the detection limit could reach 20 μM. Compared to other metal ions, the GSH-GNPs bound by calcium ions shows higher sensitivity with prominent color changes. Most importantly, the probe not only can be tested the content of calcium ion in the water simply and effectively, but also can be applied to estimate calcium levels in blood with low interference and high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Narayanan and M. A. El-Sayed (2004). Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J. Am. Chem. Soc. 126, (23), 7194–7195.

    Article  CAS  Google Scholar 

  2. E. Hutter and M.-P. Pileni (2003). Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Phys. Chem. B 107, (27), 6497–6499.

    Article  CAS  Google Scholar 

  3. V. Kattumuri, K. Katti, and S. Bhaskaran (2007). Gum Arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3, (2), 333–341.

    Article  CAS  Google Scholar 

  4. J. M. de la Fuente, A. G. Barrientos, T. C. Rojas, J. Rojo, J. Cañada, A. Fernández, and S. Penadès (2001). Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions. Angew. Chem. Int. Ed. 40, (12), 2257–2261.

    Article  Google Scholar 

  5. I.-H. Lee, H.-K. Kwon, S. An, D. Kim, S. Kim, M. K. Yu, J.-H. Lee, T.-S. Lee, S.-H. Im, and S. Jon (2012). Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angew. Chem. 124, (35), 8930–8935.

    Article  Google Scholar 

  6. A. J. Reynolds, A. H. Haines, and D. A. Russell (2006). Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate–carbohydrate interactions. Langmuir 22, (3), 1156–1163.

    Article  CAS  Google Scholar 

  7. N. L. Rosi and C. A. Mirkin (2005). Nanostructures in biodiagnostics. Chem. Rev. 105, (4), 1547–1562.

    Article  CAS  Google Scholar 

  8. L. Yi and J. Liu (2007). Smart nanomaterials inspired by biology: dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc. Chem. Res. 40, (5), 315–323.

    Article  Google Scholar 

  9. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo (2008). Nanostructured plasmonic sensors. Chem. Rev. 108, (2), 494–521.

    Article  CAS  Google Scholar 

  10. G. K. Darbha, A. K. Singh, U. S. Rai, E. Yu, H. Yu, and P. C. Ray (2008). Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 130, (25), 8038–8043.

    Article  CAS  Google Scholar 

  11. J. M. Slocik, J. S. Zabinski Jr., D. M. Phillips, and R. R. Naik (2008). Colorimetric response of peptide-functionalized gold nanoparticles to metal ions. Small 4, (5), 548–551.

    Article  CAS  Google Scholar 

  12. X. Xu, J. Wang, K. Jiao, and X. Yang (2009). Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens. Bioelectron. 24, (10), 3153–3158.

    Article  CAS  Google Scholar 

  13. X. Xue, F. Wang, and X. Liu (2008). One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc. 130, (11), 3244–3245.

    Article  CAS  Google Scholar 

  14. J.-S. Lee, P. A. Ulmann, M. S. Han, and C. A. Mirkin (2008). A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett. 8, (2), 529–533.

    Article  CAS  Google Scholar 

  15. Y. Kim, R. C. Johnson, and J. T. Hupp (2001). Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett. 1, (4), 165–167.

    Article  Google Scholar 

  16. F. Chai, C. Wang, T. Wang, L. Li, and Z. Su (2010). Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl. Mater. Interfaces 2, (5), 1466–1470.

    Article  CAS  Google Scholar 

  17. J.-S. Lee, M. S. Han, and C. A. Mirkin (2007). Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. 119, (22), 4171–4174.

    Article  Google Scholar 

  18. S. Orrenius, B. Zhivotovsky, and P. Nicotera (2003). Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, (7), 552–565.

    Article  CAS  Google Scholar 

  19. G. E. Breitwieser (2008). Extracellular calcium as an integrator of tissue function. Int. J. Biochem. Cell Biol. 40, (8), 1467–1480.

    Article  CAS  Google Scholar 

  20. N. Solovyova and A. Verkhratsky (2002). Monitoring of free calcium in the neuronal endoplasmic reticulum: an overview of modern approaches. J. Neurosci. Methods 122, (1), 1–12.

    Article  CAS  Google Scholar 

  21. H. Wang, Y. Wang, J. Jin, and R. Yang (2008). Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal. Chem. 80, (23), 9021–9028.

    Article  CAS  Google Scholar 

  22. D. Li, A. Wieckowska, and I. Willner (2008). Optical analysis of Hg(2+)ions by oligonucleotide–gold-nanoparticle hybrids and DNA-based machines. Angew. Chem. Int. Ed. 47, (21), 3927–3931.

    Article  CAS  Google Scholar 

  23. L. Chi-Wei, H. Yi-Ting, and H. Chih-Ching (2008). Detection of mercury(II) based on Hg(2+)-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun. 19, 2242–2244.

    Google Scholar 

  24. R. P. Brinas, M. Hu, L. Qian, E. S. Lymar, and J. F. Hainfeld (2008). Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 130, (3), 975–982.

    Article  CAS  Google Scholar 

  25. Q. Wu, H. Cao, and Q. Luan (2008). Biomolecule-assisted synthesis of water-soluble silver nanoparticles and their biomedical applications. Inorg. Chem. 47, (13), 5882–5888.

    Article  CAS  Google Scholar 

  26. N. L. Rosi and C. A. Mirkin (2005). Nanostructures in biodiagnostics. Chem. Rev. 105, (13), 1547–1562.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunling Zheng or Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yuan, A., Chen, C. et al. A Colorimetric Selective Sensing Probe for Calcium Ions with Tunable Dynamic Ranges Using Glutathione Modified Gold Nanoparticles. J Clust Sci 29, 469–473 (2018). https://doi.org/10.1007/s10876-018-1349-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1349-7

Keywords

Navigation