Skip to main content
Log in

Synthesis, Characterization and Functionalization of ZnO Nanoparticles by Glutamic Acid (Glu) and Conjugation of ZnO@Glu by Thiosemicarbazide and Its Synergistic Activity with Ciprofloxacin Against Multi-drug Resistant Staphylococcus aureus

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Infections caused by multi-drug resistant Staphylococcus aureus, are considered as a universal health threat. The aim of this study was to synthesize zinc oxide (ZnO) nanoparticles (NPs), functionalization of them by glutamic acid (Glu) and conjugation with thiosemicarbazid (TSC) to enhance their antibacterial effect against ciprofloxacin resistant S. aureus. The synthesized ZnO@Glu–TSC NPs were characterized using energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The physicochemical assays confirmed the synthesis of ZnO@Glu–TSC NPs. Antibacterial potential of ZnO@Glu–TSC NPs against S. aureus was investigated using well diffusion, Minimum inhibitory concentration (MIC) determination and checkerboard titration methods. MIC values of functionalized NPs reduced by two to eightfolds against each respected strain in comparison with the ZnO nanoparticles (alone). Our results revealed the synergistic activity of ZnO@Glu–TSC NPs and ciprofloxacin (CIP) against ciprofloxacin resistant S. aureus. In this study, improved antimicrobial activity of ZnO@Glu–TSC NPs and their synergism with CIP against drug resistant S. aureus was observed. Thus, ZnO@Glu–TSC NPs could be regarded as a promising new antibacterial agent to be used for therapeutic and preventive purposes. However, further investigation needs to be performed to evaluate the safety of these NPs for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Patra, S. Mitra, N. Debnath, P. Pramanik, and A. Goswami (2014). Bull. Mater. Sci. 37, 199.

    Article  CAS  Google Scholar 

  2. M. R. Hesari, A. Salehzadeh, and R. Darsanaki (2017). Acta Microbiol. Immunol. Hung. 1, 14.

    Google Scholar 

  3. S. H. Zhang, R. X. Zhao, G. Li, H. Y. Zhang, C. L. Zhang, and G. Muller (2014). RSC Adv. 4, 54837.

    Article  CAS  Google Scholar 

  4. V. Srivastava, D. Gusain, and Y. C. Sharma (2013). Ceram. Int. 39, 9803.

    Article  CAS  Google Scholar 

  5. T. Szabo, J. Nemeth, and I. Dekany (2003). Coll. Surf. A. 230, 23.

    Article  CAS  Google Scholar 

  6. L. S. Reddy, M. M. Nisha, M. Joice, and P. N. Shilpa (2014). Pharm. Biol. 52, 1388.

    Article  CAS  PubMed  Google Scholar 

  7. S. Mitra, S. Chandra, D. Laha, P. Patra, N. Debnath, A. Pramanik, P. Pramanik, and A. Goswami (2012). Mater. Res. Bull. 47, 586.

    Article  CAS  Google Scholar 

  8. E. Taylor and T. J. Webster (2011). Int. J. Nanomed. 6, 1463.

    Article  CAS  Google Scholar 

  9. J. S. Casas, M. S. Garcıa-Tasende, and J. Sordo (2000). Coordin. Chem. Rev. 209, 197.

    Article  CAS  Google Scholar 

  10. Q. X. Li, H. A. Tang, Y. Z. Li, M. Wang, L. F. Wang, and C. G. Xia (2000). J. Inorg. Biochem. 78, 167.

    Article  CAS  PubMed  Google Scholar 

  11. H. Barrak, T. Saied, P. Chevallier, G. Laroche, A. M. Nif, and A. H. Hamzaoui (2016). Arab. J. Chem. 1, 1. https://doi.org/10.1016/j.arabjc.2016.04.019.

    Article  CAS  Google Scholar 

  12. S. A. S. Shandiz, A. Montazeri, M. Abdolhosseini, S. H. Shahrestani, M. Hedayati, Z. Moradi-Shoeili, and A. Salehzadeh (2018). J. Clust. Sci. 29, 1107.

    Article  CAS  Google Scholar 

  13. The Clinical & Laboratory Standards Institute [CLSI] (2015), 76.

  14. L. He, Y. Liu, A. Mustapha, and M. Lin (2011). Microbiol. Res. 166, 207.

    Article  CAS  PubMed  Google Scholar 

  15. S. Chaudhary, Y. Kaur, A. Umar, and G. R. Chaudhary (2016). J. Mol. Liq. 220, 1013.

    Article  CAS  Google Scholar 

  16. G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams (2006). Phys. Status Solidi 3, 3577.

    Article  CAS  Google Scholar 

  17. D. M. Wiles and T. Suprunchuk (1969). Can. J. Chem. 47, 1087.

    Article  CAS  Google Scholar 

  18. L. Jin and Y. Wang (2017). Phys. Chem. Chem. Phys. 19, 12992.

    Article  CAS  PubMed  Google Scholar 

  19. J. L. Navarrete, V. Hernandez, and F. J. Ramirez (1995). J. Mol. Struct. 348, 249.

    Article  Google Scholar 

  20. K. C. Barick, A. Sharma, N. G. Shetake, R. S. Ningthoujam, R. K. Vatsa, P. D. Babu, B. N. Pandey, and P. A. Hassan (2015). Dalton Trans. 44, 14686.

    Article  CAS  PubMed  Google Scholar 

  21. S. K. Sinha, S. Ram, and O. P. Lamba (1988). Spectrochim. Acta A Mol. Spectrosc. 44, 713.

    Article  Google Scholar 

  22. K. R. Raghupathi, R. T. Koodali, and A. C. Manna (2011). Langmuir. 27, 4020.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Xie, Y. He, P. L. Irwin, T. Jin, and X. Shi (2011). Appl. Environ. Microbiol. 77, 2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N. C. Kasuga, K. Sekino, M. Ishikawa, A. Honda, M. Yokoyama, S. Nakano, N. Shimada, C. Koumo, and K. Nomiya (2003). J. Inorg. Biochem. 96, 298.

    Article  CAS  PubMed  Google Scholar 

  25. J. A. Rufian-Henares and S. P. de la Cueva (2009). J. Agric. Food Chem. 57, 432.

    Article  CAS  PubMed  Google Scholar 

  26. Q. X. Li, H. A. Tang, Y. Z. Li, M. Wang, L. F. Wang, and C. G. Xia (2000). J. Inorg. Biochem. 78, 174.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the university of Guilan and Islamic Azad university (Rasht branch) for providing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Salehzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejabatdoust, A., Salehzadeh, A., Zamani, H. et al. Synthesis, Characterization and Functionalization of ZnO Nanoparticles by Glutamic Acid (Glu) and Conjugation of ZnO@Glu by Thiosemicarbazide and Its Synergistic Activity with Ciprofloxacin Against Multi-drug Resistant Staphylococcus aureus. J Clust Sci 30, 329–336 (2019). https://doi.org/10.1007/s10876-018-01487-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-01487-3

Keywords

Navigation