Skip to main content
Log in

Novel Visible-Light-Driven Photocatalyst Co3O4/FeWO4 for Efficient Decomposition of Organic Pollutants

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A highly efficient and visible light (λ ≥ 420 nm) responsive composite photocatalyst, Co3O4/FeWO4 was prepared by simple impregnation method. The heterojunction semiconductors Co3O4/FeWO4 demonstrated notably high photocatalytic activity over a wide range of composition than the individual component Co3O4 or FeWO4 for the complete degradation of 1,4-dichlorobenzene (DCB) in aqueous phase under visible light irradiation. The photocatalytic activity of composite was optimized at 1/99 Co3O4/FeWO4 composition. After 2 h of visible light irradiation 51% decomposition of 1,4-dichlorobenzene (DCB) was observed utilizing 1/99 Co3O4/FeWO4 photocatalyst while the end members demonstrated a negligible degradation under the same experimental condition. The valence band (VB) and conduction band (CB) of Co3O4 is located above the VB and CB of FeWO4, respectively. Both the semiconductors Co3O4 and FeWO4 exhibit strong absorption over the wide range of visible light. The obviously enhanced photocatalytic performance of Co3O4/FeWO4 composite has been discussed on the hole (h+) as well as electron (e) transfer mechanism between the VB and CB of individual semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Kruczynski, H. D. Gesser, C. W. Turner, and E. A. Speers (1981). Nature 291, 399.

    Article  CAS  Google Scholar 

  2. S. U. M. Khan, M. Al-Shahry, and W. B. Ingler Jr. (2002). Science 297, 2243.

    Article  CAS  Google Scholar 

  3. X. Chen and S. S. Mao (2007). Chem. Rev. 107, 2891.

    Article  CAS  Google Scholar 

  4. N. Qin, Y. Liu, W. Wu, L. Shen, X. Chen, Z. Li, and L. Wu (2015). Langmuir 31, 1203.

    Article  CAS  Google Scholar 

  5. Y. Chen, C. Chuang, Z. Qin, S. Shen, T. Doane, and C. Burda (2017). Nanotechnology 28, 084002.

    Article  Google Scholar 

  6. H. S. Chung, G. S. Han, S. Y. Park, H. W. Shin, T. K. Ahn, S. Jeong, I. S. Cho, and H. S. Jung (2015). ACS Appl. Mater. Interfaces 7, 10324.

    Article  CAS  Google Scholar 

  7. C. G. Mendoza, S. O. Ruiz, A. H. Gordillo, R. López, G. J. Acatitla, H. A. Calderón, and R. Gómez (2016). J. Chem. Technol. Biotechnol. 91, 2198.

    Article  Google Scholar 

  8. B. Gao, Y. J. Kim, A. K. Chakraborty, and W. I. Lee (2008). Appl. Catal. B Environ. 83, 202.

    Article  CAS  Google Scholar 

  9. Y. J. Kim, B. Gao, S. Y. Han, M. H. Jung, A. K. Chakraborty, T. Ko, C. Lee, and W. I. Lee (2009). J. Phys. Chem. C 113, 19179.

    Article  CAS  Google Scholar 

  10. S. Y. Chai, Y. J. Kim, M. H. Jung, A. K. Chakraborty, D. W. Jung, and W. I. Lee (2009). J. Catal. 262, 144.

    Article  CAS  Google Scholar 

  11. F. Riboni, M. V. Dozzi, M. C. Paganini, E. Giamello, and E. Selli (2017). Catal. Today. doi:10.1016/j.cattod.2016.12.031.

    Google Scholar 

  12. S. B. Rawal, A. K. Chakraborty, and W. I. Lee (2009). Bull. Korean Chem. Soc. 30, 2613.

    Article  CAS  Google Scholar 

  13. A. K. Chakraborty, M. E. Hossain, M. M. Rhaman, and K. M. A. Sobahan (2014). J. Environ. Sci. 26, 458.

    Article  CAS  Google Scholar 

  14. A. K. Chakraborty, M. S. Akter, M. A. Haque, G. M. A. Khan, and M. S. Alam (2013). J. Clust. Sci. 24, 701.

    Article  CAS  Google Scholar 

  15. A. K. Chakraborty and M. A. Kebede (2012). React. Kinet. Mech. Catal. 106, 83.

    Article  CAS  Google Scholar 

  16. S. P. Adhikari, H. Dean, Z. D. Hood, R. Peng, K. L. More, I. Ivanov, Z. Wu, and A. Lachgar (2015). RSC Adv. 5, 91094.

    Article  CAS  Google Scholar 

  17. X. Li, F. Chen, C. Lian, and S. Zheng (2016). J. Clust. Sci. 27, 1877.

    Article  CAS  Google Scholar 

  18. K. Varadharajan, B. Singaram, R. Mani, and J. Jeyaram (2016). J. Clust. Sci. 27, 1815.

    Article  CAS  Google Scholar 

  19. R. X. Chen, S. L. Zhu, J. Mao, Z. D. Cui, X. J. Yang, Y. Q. Liang, and Z. Y. Li (2015). Int. J. Photoenergy 2015, 183468.

    Google Scholar 

  20. M. Nikl (2006). Meas. Sci. Technol. 17, 37.

    Article  Google Scholar 

  21. F. A. Danevicha, A. S. Georgadze, V. V. Kobychev, B. N. Kropivyansky, and O. Missevitch (2006). Nucl. Instrum. Methods Phys. Res. Sect. A 556, 259.

    Article  Google Scholar 

  22. A. Dias and V. S. T. Ciminelli (2001). J. Eur. Ceram. Soc. 21, 2061.

    Article  CAS  Google Scholar 

  23. Y. X. Zhou, Q. Zhang, J. Y. Gong, and S. H. Yu (2008). J. Phys. Chem. C 112, 13383.

    Article  CAS  Google Scholar 

  24. W. B. Hu, Y. M. Zhao, Z. L. Liu, C. W. Dunnill, D. H. Gregory, and Y. Q. Zhu (2008). Chem. Mater. 20, 5657.

    Article  CAS  Google Scholar 

  25. J. Lin, J. Lin, and Y. Zhu (2007). Inorg. Chem. 46, 8372.

    Article  CAS  Google Scholar 

  26. D. Ye, D. Li, W. Zhang, M. Sun, Y. Hu, Y. Zhang, and X. Fu (2008). J. Phys. Chem. C 112, 17351.

    Article  CAS  Google Scholar 

  27. Y. C. Chen, Y. G. Lin, L. C. Hsu, A. Tarasov, P. T. Chen, M. Hayashi, J. Ungelenk, Y. K. Hsu, and C. Feldmann (2016). ACS Catal. 6, 2357.

    Article  CAS  Google Scholar 

  28. Y. X. Zhou, H. B. Yao, Q. Zhang, J. Y. Gong, S. J. Liu, and S. H. Yu (2009). Inorg. Chem. 48, 1082.

    Article  CAS  Google Scholar 

  29. X. Yan, K. Liu, and W. Shi (2017). Colloids Surf. A Physicochem. Eng. Asp. 520, 138.

    Article  CAS  Google Scholar 

  30. F. D. Yu, H. Shichun, Z. J. Liu, and S. C. Lee (2011). J. Phys. Chem. C 115, 241.

    Article  Google Scholar 

  31. L. Wang and W. Z. Wang (2012). CrystEngComm 14, 3315.

    Article  CAS  Google Scholar 

  32. L. Zhang, W. Wang, L. Zhou, and H. Xu (2007). Small 3, 1618.

    Article  CAS  Google Scholar 

  33. R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Mart´ınez-Garc´ıa, and A. Segura (2008). EPL 83, 37002.

    Article  Google Scholar 

  34. S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, and Y. T. Qian (2003). Adv. Funct. Mater. 13, 639.

    Article  CAS  Google Scholar 

  35. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, and Y. Wu (2006). J. Phys. Chem. B 110, 20211.

    Article  CAS  Google Scholar 

  36. A. Gulino and I. Fragala (2005). Inorg. Chim. Acta 358, 4466.

    Article  CAS  Google Scholar 

  37. Q. Xiao, J. Zhang, C. Xiao, and X. Tan (2008). Catal. Commun. 9, 1247.

    Article  CAS  Google Scholar 

  38. Y. Xu and M. A. A. Schoonen (2000). Am. Mineral. 85, 543.

    Article  CAS  Google Scholar 

  39. L. R. Hou, C. Z. Yuan, and Y. Peng (2006). J. Mol. Catal. A Chem. 252, 132.

    Article  CAS  Google Scholar 

  40. Y. I. Kim, S. J. Atherton, E. S. Brigham, and T. E. Mallouk (1993). J. Phys. Chem. 97, 11802.

    Article  CAS  Google Scholar 

  41. M. A. Butler and D. S. Ginley (1978). J. Electrochem. Soc. 125, 228.

    Article  CAS  Google Scholar 

  42. A. Hjelm, C. G. Granqvist, and J. M. Wills (1996). Phys. Rev. B 54, 2436.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, A.K., Islam, M.R., Uddin, M.H. et al. Novel Visible-Light-Driven Photocatalyst Co3O4/FeWO4 for Efficient Decomposition of Organic Pollutants. J Clust Sci 29, 67–74 (2018). https://doi.org/10.1007/s10876-017-1302-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1302-1

Keywords

Navigation