Skip to main content
Log in

Optimization of Influential Factors on the Photocatalytic Performance of TiO2–Graphene Composite in Degradation of an Organic Dye by RSM Methodology

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Photocatalytic behavior was investigated for TiO2–graphene nanocomposite in the degradation of acid orange 7 (AO7) as a model pollutant under ultraviolet light in aqueous solution. XRD, SEM, TEM, DRS, FT-IR and EDX techniques were used for the characterization of the prepared nanocomposite. The effect of synthesis variables such as weight ratio of TiO2 to graphene and operational key factors such as initial dye concentration, irradiation time, catalyst dosage and solution distance from UV lamp were studied in the photocatalytic degradation of AO7. This excellent catalytic ability is mainly attributed to the synergic effect of photocatalyst and adsorbent. The effect of operational variables was optimized for the photocatalytic degradation of AO7 as a pollutant model using the RSM technique. In this case, the amount of the determination coefficient (R2 = 0.97) shows that 97% of the variability in the response could be described by the model. The maximum degradation efficiency (96%) was achieved at the optimum operational conditions: catalyst dosage of 0.5 g L−1, the irradiation time of 50 min and distance the solution from UV lamp of 0.3 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Robinson, G. McMullan, R. Marchant, and P. Nigam (2001). Bioresour Technol 77, 247.

    Article  CAS  Google Scholar 

  2. B. Y. Chen, M. M. Zhang, C. T. Chang, Y. Ding, K. L. Lin, C. S. Chiou, C. C. Hsueh, and H. Xu (2010). Bioresour Technol 101, 4737.

    Article  CAS  Google Scholar 

  3. I. Arslan Alaton and J. L. Ferry (2002). Dyes Pigm 54, 25.

    Article  CAS  Google Scholar 

  4. K. Golka, S. Kopps, and Z. W. Myslak (2004). Toxicol. Lett 151, 203.

    Article  CAS  Google Scholar 

  5. F. Saadati, N. Keramati, and M. Mehdipour Ghazi (2016). Environmental Science and Technology 46, 757.

    Article  CAS  Google Scholar 

  6. X. Li, F. Chen, C. Lian, S. Zheng, Q. Hu, S. Duo, W. Li, and C. Hu (2016). Journal of Cluster Science 27, 1877.

    Article  CAS  Google Scholar 

  7. A. R. Nezamzadeh-Ejhieh and A. Shirzadi (2014). Chemosphere 107, 136.

    Article  CAS  Google Scholar 

  8. L. Yue, Sh Wang, G. Shan, W. Wu, L. Qiang, and L. Zhu (2015). Applied Catalysis B: Environmental 176, 11.

    Article  Google Scholar 

  9. Z. Xian, R. Liu, H. Li, S. Zhang, Z. Yang, W. Zheng, and C. Chen (2016). Journal of Cluster Science 27, 241.

    Article  CAS  Google Scholar 

  10. Z. Yaping, J. Chengguang, P. Ran, M. A. Feng, and O. U. Guangnan (2014). Journal of Central South University 21, 310.

    Article  Google Scholar 

  11. A. Azarian (2015). Journal of Cluster Science 26, 1607.

    Article  CAS  Google Scholar 

  12. J. Zhang, G. F. Huang, D. Li, B. X. Zhou, S. Chang, A. Pan, and W. Q. Huang (2016). Appl. Phys. A 122, 994.

    Article  Google Scholar 

  13. X. Wang, Y. Sang, X. Yu, B. Liu, and H. Liu (2016). Appl. Phys. A 122, 884.

    Article  Google Scholar 

  14. A. Alinsafi, F. Evenou, E. M. Abdulkarim, M. N. Pons, O. Zahraa, A. Benhammou, A. Yaacoubi, and A. Nejmeddine (2007). Dyes Pigm 74, 439.

    Article  CAS  Google Scholar 

  15. D. Beydoun, R. Amal, G. Low, and S. McEvoy (1999). J. Nanopart. Res 1, 4394.

    Article  Google Scholar 

  16. T. Yoshida, N. Yaghi, R. Nakagou, A. Sugimura, and I. Umezu (2014). Appl. Phys. A, DOI: 10.1007/s00339-014-8378-3

  17. J. Chen, Y. Qian, and X. Wei (2010). J. Mater. Sci 45, 6018.

    Article  CAS  Google Scholar 

  18. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, and M. Hamadanin (2016). Journal of Materials Science: Materials in Electronics. doi:10.1007/s10854-016-4361-4.

    Google Scholar 

  19. J. W. Shi, J. T. Zheng, and X. J. Ji (2010). Environmental Engineering Science 27, 923.

    Article  CAS  Google Scholar 

  20. B. Paul, W. N. Martens, and R. L. Frost (2012). Applied Clay Science 57, 49.

    Article  CAS  Google Scholar 

  21. H. Wang, B. Yang, and W. J. Zhang (2010). Advanced Materials Research 129, 733.

    Article  Google Scholar 

  22. S. Liu, M. Lim, and R. Amal (2014). Chemical Engineering Science 105, 46.

    Article  CAS  Google Scholar 

  23. F. Tavakoli and M. Salavati Niasari (2014). J. Ind & Eng chem 20, 3170.

    Article  CAS  Google Scholar 

  24. M. Salavati Niasari and F. Tavakoli (2015). J. Ind & Eng chem 21, 1208.

    Article  CAS  Google Scholar 

  25. V. Singh, D. Joung, L. Zhai, S. Das, S. Khondaker, and S. Seal (2011). Materials Science 56, 1178.

    CAS  Google Scholar 

  26. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal (2011). Progress in Materials Science 56, 1178.

    Article  CAS  Google Scholar 

  27. X. Zhang, X. Liu, W. Zheng, and J. Zhu (2012). Carbohydrate Polymers 88, 26.

    Article  CAS  Google Scholar 

  28. S. Escobedo, B. Serrano, A. Calzada, J. Moreira, and H. D. Lasa (2016). Fuel 181, 438.

    Article  CAS  Google Scholar 

  29. I. V. Lightcap, T. H. Kosel, and P. V. Kamat (2010). Nano Lett 10, 577.

    Article  CAS  Google Scholar 

  30. H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, and J. H. Li (2010). ACS Nano 4, 380.

    Article  CAS  Google Scholar 

  31. Y. H. Zhang, Z. R. Tang, X. Z. Fu, and Y. J. Xu (2010). ACS Nano 4, 7303.

    Article  CAS  Google Scholar 

  32. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, and F. Huang (2007). J. Phys. Chem. C 111, 18288.

    Article  CAS  Google Scholar 

  33. L. Chen, D. Jiang, T. He, Z. Wu, and M. Chen (2013). Cryst. Eng. Commun 15, 7556.

    Article  CAS  Google Scholar 

  34. M. A. Behnajady, N. Modirshahla, M. Shokri, H. Elham, and A. Zeininezhad (2008). J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng 43, 460.

    Article  CAS  Google Scholar 

  35. S. Chakrabarti and B. K. Dutta (2004). J. Hazard. Mater 112, 269.

    Article  CAS  Google Scholar 

  36. M. A. Behnajady, N. Modirshahla, N. Daneshvar, and M. Rabbani (2007). Chem. Eng. J 127, 167.

    Article  CAS  Google Scholar 

  37. L. A. Ghule, A. A. Patil, K. B. Sapnar, S. D. Dhole, and K. M. Garadkar (2011). Toxicol. Environ. Chem 93, 623.

    Article  CAS  Google Scholar 

  38. M.A. Behnajady, H. Eskandarloo, Res. Chem. Intermed. http://dx.doi.org/10.1007/s11164-013-1327-5.

  39. B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan (2002). J. Hazard. Mater 89, 303.

    Article  CAS  Google Scholar 

  40. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus (2012). ACS Catal 2, 949.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Council of University of Tehran and Center for International Scientific Studies Collaboration for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Badiei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, F., Badiei, A., Yazdian, F. et al. Optimization of Influential Factors on the Photocatalytic Performance of TiO2–Graphene Composite in Degradation of an Organic Dye by RSM Methodology. J Clust Sci 28, 2979–2995 (2017). https://doi.org/10.1007/s10876-017-1250-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1250-9

Keywords

Navigation