Skip to main content
Log in

Probing Crystallization Pathways in Group V Polyoxometalate Solutions

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Structure elucidation is extremely important to understand and control processes in synthetic chemistry, in drug design, and in biomolecular function; and the most important step of structure elucidation is crystallization. Preceding crystallization of ionic compounds is usually ion-association in solution, which can be induced by a variety of ways. Here we study ion-association of hexaniobate and hexatantalate polyoxometalate salts in mixed water-alcohol solutions. These hexametalate clusters have the unusual characteristic of increased solubility with increased ion-association, which makes them ideal candidates to understand the fundamentals of ion-pairing. We utilize direct (X-ray scattering) and indirect (ion-conductivity) methods to document the ion-association as a function of alkali, concentration, alcohol:water ratio, and Nb versus Ta. The conductivity data coupled with X-ray scattering shows that decreasing solvent polarity increases cluster-alkali association; but decreases any interaction between the alkali-cluster aggregates. Conductivity data show the trend of increasing alkali-cluster association with increasing alkali size as is expected for hexaniobate, but has some discrepancies with hexatantalate. We attribute this to the concomitant effects of protonation of the clusters, with hexaniobate being a stronger base. These studies provide insight into aqueous behaviour of these clusters that exhibit the anomalous behaviour of high solubility with maximum ion-association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Nyman, T. M. Alam, F. Bonhomme, M. A. Rodriguez, C. S. Frazer, and M. E. Welk (2006). J. Clust. Sci. 17, 197–219.

    Article  CAS  Google Scholar 

  2. Y. Hou, M. Nyman, and M. A. Rodriguez (2011). Angew. Chem. 50, 12514–12517.

    Article  CAS  Google Scholar 

  3. I. Lindqvist (1953). Ark. Kem. 5, 247.

    CAS  Google Scholar 

  4. M. R. Antonio, M. Nyman, and T. M. Anderson (2009). Angew. Chem. 48, 6136–6140.

    Article  CAS  Google Scholar 

  5. L. B. Fullmer, P. I. Molina, M. R. Antonio, and M. Nyman (2014). Daltons Trans. 43, 15295–15299.

    Article  CAS  Google Scholar 

  6. D. J. Sures, S. K. Sahu, P. I. Molina, A. Navrotsky, and M. Nyman (2016). ChemistrySelect 1, 1858–1862.

    Article  CAS  Google Scholar 

  7. G. J.-P. Deblonde, N. Delaunay, D. Lee, A. Chagnes, G. Cote, and P. Gareil (2015). RSC Adv. 5, 64119–64124.

    Article  CAS  Google Scholar 

  8. P. Yin, D. Li, and T. Liu (2011). Isr. J. Chem. 51, 191–204.

    Article  CAS  Google Scholar 

  9. J. M. Pigga and T. Liu (2010). Inorg. Chim. Acta. 363, 4230–4233.

    Article  CAS  Google Scholar 

  10. G. Liu, M. L. Kistler, T. Li, A. Bhatt, and T. Liu (2006). J. Clust. Sci. 17, 427–443.

    Article  CAS  Google Scholar 

  11. M. Nyman and P. C. Burns (2012). Chem. Soc. Rev. 41, 7354–7367.

    Article  CAS  Google Scholar 

  12. T. Kojima, M. R. Antonio, and T. Ozeki (2011). J. Am. Chem. Soc. 133, 7248–7251.

    Article  CAS  Google Scholar 

  13. V. W. Day, W. G. Klemperer, and D. J. Maltbie (1987). J. Am. Chem. Soc. 109, 2991–3002.

    Article  CAS  Google Scholar 

  14. L. B. Fullmer, R. H. Mansergh, L. N. Zakharov, D. A. Keszler, and M. Nyman (2015). Cryst. Growth Des. 15, 3885–3892.

    Article  CAS  Google Scholar 

  15. T. M. Anderson, M. A. Rodriguez, F. Bonhomme, J. N. Bixler, T. M. Alam, and M. Nyman (2007). Daltons Trans. 9226, 4517–4522.

    Article  Google Scholar 

  16. J. Ilavsky and P. R. Jemian (2009). J. Appl. Crystallogr. 42, 347–353.

    Article  CAS  Google Scholar 

  17. N. Zhang, Z. Shen, C. Chen, G. He, and C. Hao (2015). J. Mol. Liq. 203, 90–97.

    Article  CAS  Google Scholar 

  18. M. K. Bera and M. R. Antonio (2016). J. Am. Chem. Soc. 138, 7282–7288.

    Article  CAS  Google Scholar 

  19. E. Balogh, T. M. Anderson, J. R. Rustad, M. Nyman, and W. H. Casey (2007). Inorg. Chem. 46, 7032–7039.

    Article  CAS  Google Scholar 

  20. J. R. Black, M. Nyman, and W. H. Casey (2006). J. Am. Chem. Soc. 68, 14712–14720.

    Article  Google Scholar 

  21. J. Soriano-López, S. Goberna-Ferrón, L. Vigara, J. J. Carbó, J. M. Poblet, and J. R. Galán-Mascarós (2013). Inorg. Chem. 52, 4753–4755.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0010802.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. B. Fullmer or M. Nyman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fullmer, L.B., Nyman, M. Probing Crystallization Pathways in Group V Polyoxometalate Solutions. J Clust Sci 28, 813–823 (2017). https://doi.org/10.1007/s10876-016-1106-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1106-8

Keywords

Navigation