Skip to main content
Log in

A Unique Mixed-Valence CuII/CuI Organic–Inorganic Hybrid Supramolecular Cluster: Syntheses, Crystal Structure, Luminescence and 2,4,6-Trinitrophenol Sensing Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A unique mixed-valence CuII/CuI organic–inorganic hybrid supramolecular cluster {[Cu(DMSO)5][Cu4I6(DMSO)]}n (1) has been achieved in the presence of CuI under the acid condition, and characterized by X-ray single and powder crystal diffractions, elemental analysis, IR, UV–vis, thermogravimetric analysis. 1 has an unusual five DMSO coordinated bivalent copper cation [Cu(DMSO)5]2+; while the anionic architecture of 1 exhibits a 1-D wavelike CuI iodide hybrid cluster chain, constructed by [Cu4I6(DMSO)]2− repeated cluster units linking each other through shared μ2-I and μ3-I atoms. The solvent-coordinated cations interact with the 1-D anionic cluster chains to form a 3-D supramolecular framework through hydrogen bonds. Moreover, the luminescence and 2,4,6-trinitrophenol (TNP) sensing properties of 1 were explored in 2-propanol suspension, which revealed that 1 exhibits highly sensitive for TNP detection through energy transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhang, W. Q. Liao, D. W. Fu, H. Y. Ye, Z. N. Chen, and R. G. Xiong (2015). J. Am. Chem. Soc. 137, 4928.

    Article  CAS  Google Scholar 

  2. Y. G. Ha, J. D. Emery, M. J. Bedzyk, H. Usta, A. Facchetti, and T. J. Marks (2011). J. Am. Chem. Soc. 133, 10239.

    Article  CAS  Google Scholar 

  3. Q. F. Dong, Y. J. Fang, Y. C. Shao, P. Mulligan, J. Qiu, L. Cao, and J. S. Huang (2015). Science 347, 967.

    Article  CAS  Google Scholar 

  4. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel (2014). Adv. Funct. Mater. 24, 3250.

    Article  CAS  Google Scholar 

  5. C. Zou, Z. J. Zhang, X. Xu, Q. H. Gong, J. Li, and C. D. Wu (2012). J. Am. Chem. Soc. 134, 87.

    Article  CAS  Google Scholar 

  6. H. Zhang, K. Yu, J. H. Lv, L. H. Gong, C. M. Wang, C. X. Wang, D. Sun, and B. B. Zhou (2015). Inorg. Chem. 54, 6744.

    Article  CAS  Google Scholar 

  7. P. X. Li, M. S. Wang, M. J. Zhang, C. S. Lin, L. Z. Cai, S. P. Guo, and G. C. Guo (2014). Angew. Chem. Int. Ed. Engl. 53, 11529.

    Article  CAS  Google Scholar 

  8. C. J. Zhang, Z. W. Chen, R. G. Lin, M. J. Zhang, P. X. Li, M. S. Wang, and G. C. Guo (2014). Inorg. Chem. 53, 847.

    Article  CAS  Google Scholar 

  9. R. Peng, M. Li, and D. Li (2010). Coord. Chem. Rev. 254, 1.

    Article  CAS  Google Scholar 

  10. K. M. Henline, C. Wang, and R. D. Pike (2014). Cryst. Growth Des. 14, 1449.

    Article  CAS  Google Scholar 

  11. S. Mishra, E. Jeanneau, S. Daniele, and L. G. H. Pfalzgraf (2008). CrystEngComm 10, 814.

    Article  CAS  Google Scholar 

  12. K. Tsugea, Y. Chishinab, H. Hashiguchib, Y. Sasakib, M. Katob, S. Ishizakac, and N. Kitamura (2016). Coord. Chem. Rev. 306, 636.

    Article  Google Scholar 

  13. Q. Benito, X. F. Le Goff, G. Nocton, A. Fargues, A. Garcia, A. Berhault, S. Kahlal, J. Y. Saillard, C. Martineau, J. Trebosc, T. Gacoin, J. P. Boilot, and S. Perruchas (2015). Inorg. Chem. 54, 4483.

    Article  CAS  Google Scholar 

  14. D. M. Zink, M. Baechle, T. Baumann, M. Nieger, M. Kuehn, C. Wang, W. Klop-per, U. Monkowius, T. Hofbeck, H. Yersin, and S. Bräse (2013). Inorg. Chem. 52, 2292.

    Article  CAS  Google Scholar 

  15. Y. L. Hou, R. W. Y. Sun, X. P. Zhou, J. H. Wang, and D. Li (2014). Chem. Commun. 50, 2295.

    Article  CAS  Google Scholar 

  16. X. W. Lei, C. Y. Yue, J. Q. Zhao, Y. F. Han, J. T. Yang, R. R. Meng, C. S. Gao, H. Ding, C. Y. Wang, and W. D. Chen (2015). Cryst. Growth Des. 15, 5416.

    Article  CAS  Google Scholar 

  17. X. L. Luo, L. B. Sun, J. Zhao, D. S. Li, D. M. Wang, G. H. Li, Q. S. Huo, and Y. L. Liu (2015). Cryst. Growth Des. 15, 4901.

    Article  CAS  Google Scholar 

  18. B. J. Xin, G. Zeng, L. Gao, Y. Li, S. H. Xing, J. Hua, G. H. Li, Z. Shi, and S. H. Feng (2013). Dalton Trans. 42, 7562.

    Article  CAS  Google Scholar 

  19. G. Park, H. J. Yang, T. H. Kim, and J. Kim (2011). Inorg. Chem. 50, 961.

    Article  CAS  Google Scholar 

  20. Y. L. Wang, N. Zhang, Q. Y. Liu, Z. M. Shan, R. Cao, M. S. Wang, J. J. Luo, and E. L. Yang (2011). Cryst. Growth Des. 11, 130.

    Article  CAS  Google Scholar 

  21. S. Mishra, E. Jeanneau, G. Ledouxc, and S. Daniele (2012). CrystEngComm 14, 3894.

    Article  CAS  Google Scholar 

  22. J. A. Rusanov, K. V. Domasevitch, O Yu Vassilyeva, V. N. Kokozay, E. B. Rusanov, S. G. Nedelko, O. V. Chukova, B. Ahrens, and P. R. Raithby (2000). J. Chem. Soc. Dalton Trans. 13, 2175.

    Article  Google Scholar 

  23. M. A. Tershansy, A. M. Goforth, J. M. Ellsworth, M. D. Smith, and H. C. zur Loye (2008). CrystEngComm 10, 833.

    Article  CAS  Google Scholar 

  24. S. Mishra, E. Jeanneau, H. Chermette, S. Daniele and L. G. H. Pfalzgraf (2008). Dalton Trans. 620.

  25. S. Mishra, L. G. H. Pfalzgraf, E. Jeanneaub and H. Chermette (2007). Dalton Trans. 410.

  26. Q. Y. Li and Y. L. Fu (2009). CrystEngComm 11, 1515.

    Article  CAS  Google Scholar 

  27. N. Leblanc, S. Sproules, C. Pasquier, P. A. Senzier, H. Raffyc, and A. K. Powell (2015). Chem. Commun. 51, 12740.

    Article  CAS  Google Scholar 

  28. D. Q. Feng, X. P. Zhou, J. Zheng, G. H. Chen, X. C. Huang, and D. Li (2012). Dalton Trans. 41, 4255.

    Article  CAS  Google Scholar 

  29. R. P. Hammond, M. Cavaluzzi, R. C. Haushalter, and J. A. Zubieta (1999). Inorg. Chem. 38, 1288.

    Article  CAS  Google Scholar 

  30. G. A. Bowmaker, P. D. W. Boyd, C. E. F. Rickard, M. L. Scudder, and I. G. Dance (1999). Inorg. Chem. 38, 5476.

    Article  CAS  Google Scholar 

  31. Z. Q. Xu, L. K. Thompson, and D. O. Miller (2003). Inorg. Chem. 42, 1107.

    Article  CAS  Google Scholar 

  32. J. He, J. X. Zhang, C. K. Tsang, Z. T. Xu, Y. G. Yin, D. Li, and S. W. Ng (2008). Inorg. Chem. 47, 7948.

    Article  CAS  Google Scholar 

  33. T. Katayama, T. Ishida, and T. Nogami (2002). Inorg. Chim. Acta. 329, 31.

    Article  CAS  Google Scholar 

  34. D. G. Lonnon, D. C. Craig, and S. B. Colbran (2006). Inorg. Chem. Commun. 9, 887.

    Article  CAS  Google Scholar 

  35. Y. Salinas, R. Martinez-Manez, M. D. Marcos, F. Sancenon, A. M. Castero, M. Parra, and S. Gil (2012). Chem. Soc. Rev. 41, 1261.

    Article  CAS  Google Scholar 

  36. S. W. Thomas III, G. D. Joly, and T. M. Swager (2007). Chem. Soc. Rev. 36, 1339.

    Article  Google Scholar 

  37. M. E. Germain and M. J. Knapp (2009). Chem. Soc. Rev. 38, 2543.

    Article  CAS  Google Scholar 

  38. A. J. Lan, K. H. Li, H. H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. C. Hong, and J. Li (2009). Angew. Chem. Int. Ed. 48, 2334.

    Article  CAS  Google Scholar 

  39. G. He, H. Peng, T. Liu, M. Yang, Y. Zhang, and Y. Fang (2009). J. Mater. Chem. 19, 7347.

    Article  CAS  Google Scholar 

  40. K. M. Wollin and H. H. Dieter (2005). Arch. Environ. Contam. Toxicol. 49, 18.

    Article  CAS  Google Scholar 

  41. S. S. Nagarkar, A. V. Desai, and S. K. Ghosh (2014). Chem. Commun. 50, 8915.

    Article  CAS  Google Scholar 

  42. S. S. Nagarkar, B. Joarder, A. K. Chaudhari, S. Mukherjee, and S. K. Ghosh (2013). Angew. Chem. 125, 2953.

    Article  Google Scholar 

  43. E. L. Zhou, P. Huang, C. Qin, K. Z. Shao, and Z. M. Su (2015). J. Mater. Chem. A 3, 7224.

    Article  CAS  Google Scholar 

  44. M. Venkateswarulu, A. Pramanikb, and R. R. Koner (2015). Dalton Trans. 44, 6348.

    Article  CAS  Google Scholar 

  45. B. Joarder, A. V. Desai, P. Samanta, S. Mukherjee, and S. K. Ghosh (2015). Chem. Eur. J. 21, 965.

    Article  CAS  Google Scholar 

  46. G. M. Sheldrick SHELXS-97 and SHELXL-97, Programs for Crystal Structure Refinement (University of Göttingen, Germany, 1997).

    Google Scholar 

  47. Y. J. Cui, Y. F. Yue, G. D. Qian, and B. L. Chen (2012). Chem. Rev. 112, 1126.

    Article  CAS  Google Scholar 

  48. H. Feng, X. P. Zhou, T. Wu, D. Li, Y. G. Yin, and S. W. Ng (2006). Inorg. Chem. Acta. 359, 4027.

    Article  CAS  Google Scholar 

  49. S. Mishra, E. Jeanneau, G. Ledoux, and S. Daniele (2014). Inorg. Chem. 53, 11721.

    Article  CAS  Google Scholar 

  50. S. S. Batsanov (2001). Inorg. Mater. 37, 871.

    Article  CAS  Google Scholar 

  51. S. L. Li and X. M. Zhang (2014). Inorg. Chem. 53, 8376.

    Article  CAS  Google Scholar 

  52. M. H. Bi, G. H. Li, Y. C. Zou, Z. Shi, and S. H. Feng (2007). Inorg. Chem. 46, 604.

    Article  CAS  Google Scholar 

  53. M. H. Bi, G. H. Li, J. Hua, Y. L. Liu, X. M. Liu, Y. W. Hu, Z. Shi, and S. H. Feng (2007). Cryst. Growth Des. 7, 2066.

    Article  CAS  Google Scholar 

  54. S. L. Hu, K. Y. Niu, J. Sun, J. Yang, N. Q. Zhao, and X. W. Du (2009). J. Mater. Chem. 19, 484.

    Article  CAS  Google Scholar 

  55. L. H. Shi, Y. N. Li, X. F. Li, X. P. Wen, G. M. Zhang, J. Yang, C. Dong, and S. M. Shuang (2015). Nanoscale 7, 7394.

    Article  CAS  Google Scholar 

  56. R. M. Clark, B. J. Carey, T. Daeneke, P. Atkin, M. Bhaskaran, K. Latham, I. S. Coleb, and K. Kalantar-zadeh (2015). Nanoscale 7, 16763.

    Article  CAS  Google Scholar 

  57. J. Feng, W. J. Wang, X. Hai, Y. L. Yu, and J. H. Wang (2016). J. Mater. Chem. B. 4, 387.

    Article  CAS  Google Scholar 

  58. N. Kitada and T. Ishida (2014). CrystEngComm 16, 8035.

    Article  CAS  Google Scholar 

  59. D. Sun, S. Yuan, H. Wang, H. F. Lu, S. Y. Feng, and D. F. Sun (2013). Chem. Commun. 49, 6152.

    Article  CAS  Google Scholar 

  60. A. Tsuboyama, K. Kuge, M. Furugori, S. Okada, M. Hoshino, and K. Ueno (2007). Inorg. Chem. 46, 1992.

    Article  CAS  Google Scholar 

  61. W. Luo, Y. Zhu, J. Zhang, J. He, Z. Chi, P. W. Miller, L. Chena, and C. Y. Sua (2014). Chem. Commun. 50, 11942.

    Article  CAS  Google Scholar 

  62. S. Ramachandra, Z. D. Popovic, K. C. Schuermann, F. Cucinotta, C. Calzaferri, and L. D. Cola (2011). Small 7, 1488.

    Article  CAS  Google Scholar 

  63. J. Wang, J. Mei, W. Z. Yuan, P. Lu, A. J. Qin, J. Z. Sun, Y. G. Ma, and B. Z. Tang (2011). J. Mater. Chem. 21, 4056.

    Article  CAS  Google Scholar 

  64. W. Wei, X. B. Huang, K. Y. Chen, Y. M. Tao, and X. Z. Tang (2012). RSC Adv. 2, 3765.

    Article  CAS  Google Scholar 

  65. M. M. Chen, X. Zhou, H. X. Li, X. X. Yang, and J. P. Lang (2015). Cryst. Growth Des. 15, 2753.

    Article  CAS  Google Scholar 

  66. S. S. Nagarkar, A. V. Desai, and S. K. Ghosh (2014). Chem. Commun. 50, 8915.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (50925207, 51172100, 51432006), the Ministry of Science and Technology of China (2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (IRT1064), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (B13025), Jiangsu Innovation Research Team, Natural Science Foundation of Jiangsu Provence (BK20140163).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinfang Zhang or Chi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1705 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, J., Gong, L. et al. A Unique Mixed-Valence CuII/CuI Organic–Inorganic Hybrid Supramolecular Cluster: Syntheses, Crystal Structure, Luminescence and 2,4,6-Trinitrophenol Sensing Properties. J Clust Sci 27, 1353–1364 (2016). https://doi.org/10.1007/s10876-016-1005-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-1005-z

Keywords

Navigation