Skip to main content
Log in

The Adsorption of Ag on (CdTe)13 Core-Cage Nanocluster: A Computational Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Cadmium chalcogenide semiconductor quantum dots, especially doped nanoclusters, have attracted great attention for their effects on photo generated carriers and their lifetime due to introduced trapping states by changing surface unbonded orbitals. Here, we investigate the adsorption of Ag on “magic-sized” cadmium chalcogenide (CdTe)13 core-cage nanoclusters, Cd13Te13Ag, by first-principles density functional theory. All possible adsorption sites, top, bridge, and hollow sites, have been considered. Particular attention is paid to the energy band structures of Cd13Te13Ag. The study demonstrates that the hollow sites, the centers of hexagons, are the favorite Ag adsorption sites. Unlike observed shallow acceptor level of doped QDs, two unusual deep mid-gap states with different spins, spin up and spin down, are observed. These two deep states shift with Ag moving towards the core of cage. The detail properties of adsorption configurations and these two deep states are analyzed. These two deep states should have important role to their optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Stavrinadis, A. K. Rath, F. P. García de Arquer, S. L. Diedenhofen, C. Magén, L. Martinez, D. So, and G. Konstantatos (2013). Nat. Commun. 4, 2981.

    Article  Google Scholar 

  2. W. Koh, A. Y. Koposov, J. T. Stewart, B. N. Pal, I. Robel, J. M. Pietryga, and V. I. Klimov (2013). Sci. Rep. 3, 2004.

    Article  Google Scholar 

  3. Z. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J. Xu, O. Voznyy, P. Maraghechi, X. Lan, S. Hoogland, Y. Ren, and E. H. Sargent (2013). Adv. Mater. 25, 1719.

    Article  CAS  Google Scholar 

  4. S. Roy, C. Tuinenga, F. Fungura, P. Dagtepe, J. Jasinski, and V. Chikan (2009). J. Phys. Chem. C 113, 13008.

    Article  CAS  Google Scholar 

  5. C. Tuinenga, J. Jasinski, V. J. Leppert, T. Iwamoto, and V. Chikan (2008). ACS Nano. 2, 1411.

    Article  CAS  Google Scholar 

  6. D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, and U. Banin (2011). Science 332, 77.

    Article  CAS  Google Scholar 

  7. C. Echeverría-Arrondo, J. Pérez-Conde, and A. Ayuela (2009). Phys. Rev. B 79, 155319.

    Article  Google Scholar 

  8. P. Schapotschnikow, B. Hommersom, and T. J. H. Vlugt (2009). J. Phys. Chem. C 113, 12690.

    Article  CAS  Google Scholar 

  9. V. Proshchenko and Y. Dahnovsky (2015). Chem. Phys. 461, 58.

    Article  CAS  Google Scholar 

  10. L. Nahar, R. J. A. Esteves, S. Hafiz, U. Ozgur, and I. U. Arachchige (2015). ACS Nano 9, 9810.

    Article  CAS  Google Scholar 

  11. E. Shaviv and U. Banin (2010). ACS Nano 4, 1529.

    Article  CAS  Google Scholar 

  12. C. Barglik-Chory, C. Remenyi, C. Dem, M. Schmitt, W. Kiefer, C. Gould, C. Rüster, G. Schmidt, D. M. Hofmann, D. Pfisterer, and G. Müller (2003). Phys. Chem. Chem. Phys. 5, 1639.

    Article  CAS  Google Scholar 

  13. N. Pradhan and D. D. Sarma (2011). J. Phys. Chem. Lett. 2, 2818.

    Article  CAS  Google Scholar 

  14. P. J. Whitham, K. E. Knowles, P. J. Reid, and D. R. Gamelin (2015). Nano Lett. 5, 4045.

    Article  Google Scholar 

  15. S. M. Harrell, J. R. McBride, and S. J. Rosenthal (2013). Chem. Mater. 25, 1199.

    Article  CAS  Google Scholar 

  16. P. Hohenberg and W. Kohn (1964). Phys. Rev. B 136, 864.

    Article  Google Scholar 

  17. W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133.

    Article  Google Scholar 

  18. B. Delley (1990). J. Chem. Phys. 92, 508.

    Article  CAS  Google Scholar 

  19. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865.

    Article  CAS  Google Scholar 

  20. B. Delley (1996). J. Phys. Chem. 100, 6104.

    Article  Google Scholar 

  21. B. Delley (2000). J. Chem. Phys. 113, 7756.

    Article  CAS  Google Scholar 

  22. J. G. Wang, L. Ma, J. J. Zhao, and K. A. Jackson (2009). J. Chem. Phys. 130, 214307.

    Article  Google Scholar 

  23. Z. Wu, Y. Zhang, S. Huang, and S. Zhang (2013). Comput. Mater. Sci. 68, 238.

    Article  CAS  Google Scholar 

  24. Y. Zhang, X. Zheng, S. Zhang, S. Huang, P. Wang, and H. Tian (2012). Int. J. Hydrog. Energy 37, 12411.

    Article  CAS  Google Scholar 

  25. S. Kr and A. Kshirsagar Bhattacharya (2011). Eur. Phys. J. D 61, 609.

    Article  Google Scholar 

  26. K. T. Chan, J. B. Neaton, and M. L. Cohen (2008). Phys. Rev. B 77, 235430.

    Article  Google Scholar 

  27. P. Nagpal and V. I. Klimov (2011). Nat. Commun. 2, 486.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21376013). This paper is supported by “Chemical Grid Project” of Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, Q., Huang, S. et al. The Adsorption of Ag on (CdTe)13 Core-Cage Nanocluster: A Computational Study. J Clust Sci 27, 1057–1066 (2016). https://doi.org/10.1007/s10876-016-0992-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-016-0992-0

Keywords

Navigation