Skip to main content
Log in

Preparation, Characterization and Transport Properties of Novel Cation-Exchange Nanocomposite Membrane Containing BaFe12O19 Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A new type of ion-exchange nanocomposite membranes was prepared by addition of barium ferrite nanoparticles to a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride via a simple casting method. Hard magnetic BaFe12O19 nanoparticles were synthesized via a facile sonochemical-assisted reaction. Nanoparticles and nanocomposites were then characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and alternating gradient force magnetometer. Various characterizations revealed that the addition of different amounts of inorganic fillers could affect the membrane performance. The inorganic nanoparticles not only created extra pores and water channels that led to improve ion conductivity, but also provided higher permselectivity and transport number of counter-ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

SPPO:

Sulfonated poly (2,6-dimethyl-1,4-phenylene oxide)

SPVC:

Sulfonated polyvinylchloride

IEMS:

Ion-exchange membranes

THF:

Tetrahydrofuran

SEM:

Scanning electron microscope

FT-IR:

Fourier transform infrared spectroscopy

AGFM:

Alternating gradient force magnetometer

IEC:

Ion-exchange capacity

Em :

Membrane potential (mV)

\({\text{t}}_{\text{i}}^{\text{m}}\); t0 :

Transport number of counter ions in membrane phase; in solution

Ps :

Membrane ionic permselectivity

Y:

Concentration of fixed charge on the membrane surface

C.E:

Current efficiency

a:

Milli-equivalent of ion-exchange groups in membrane (meq)

A:

Membrane surface area (m2)

β:

Width of the observed diffraction peak at its half maximum intensity

λ:

X-ray wavelength

a1, a2 :

Ions electrolytic activities

Cmean :

Mean concentration of electrolytes (M)

d:

Membrane thickness (m)

∆n:

Number of transported moles through membrane

F:

Faraday constant

I:

Current intensity (A)

n, Zi :

Electrovalence of ion

r:

Areal electrical resistance (Ω cm2)

R:

Universal gases constant (J mol−1 K−1)

R1 and R2 :

Electrical resistance (Ω)

Rm :

Membrane resistance (Ω)

T:

Temperature (K)

t:

Time (min)

References

  1. M. Seno, M. Takagi, K. Takeda, M. Teramoto, T. Hashimoto, Hand-book of Separation Science (Kyoritsu, Tokyo, 1993).

    Google Scholar 

  2. M. Kogure, H. Ohya, R. Paterson, M. Hosaka, J. Kim, S. McFadzean (1997) J. Membr. Sci. 126, 161.

    Article  CAS  Google Scholar 

  3. T. Sata (2000) J. Membr. Sci. 167, 1.

    Article  CAS  Google Scholar 

  4. J. R. Varcoe, R. C. T. Slade (2005) Fuel Cells 5, 187.

    Article  CAS  Google Scholar 

  5. F. Q. Liu, B. L. Yi, D. M. Xing, J. R. Yu, H. M. Zhang (2003) J. Membr. Sci. 212, 213.

    Article  CAS  Google Scholar 

  6. R. K. Nagarale, G. S. Gohil, V. K. Shahi (2006) Adv. Colloid Interface Sci. 119, 97.

    Article  CAS  Google Scholar 

  7. C.T. Matos, S. Velizarov, J. G. Crespo (2006) Water Res. 40, 231.

    Article  CAS  Google Scholar 

  8. K. A. Mauritz (1998) Mater. Sci. Eng. C6, 121.

    Article  CAS  Google Scholar 

  9. M. L. Sforca, I. V. P. Yoshida, S. P. Nunes (1999) J. Membr. Sci. 159, 197.

    Article  CAS  Google Scholar 

  10. R. K. Nagarale, G. S. Gohil, V. K. Shahi, G. S. Trivedi, R. Rangarajan (2004) J. Colloid Interface Sci. 277, 162.

    Article  CAS  Google Scholar 

  11. M. M. A. Khan, Rafiuddin (2012) J. Appl. Polymer Sci. 124, 338.

    Article  Google Scholar 

  12. A. R. Khodabakhshi, S. S. Madaeni, T. W. Xu, L. Wu, C. Wu, C. Li, W. Na, S. A. Zolanvari, A. Babayi, J. Ghasemi, S. M. Hosseini, A. Khaledi (2012) Sep. Purif. Technol. 90, 10.

    Article  CAS  Google Scholar 

  13. T. W. Xu, W. H. Yang, B. L. He (2002) Chin. J. Polym. Sci. 20, 53.

    CAS  Google Scholar 

  14. T. W. Xu, D. Wu, L. Wu (2008) Prog. Polym. Sci. 33, 894.

    Article  CAS  Google Scholar 

  15. H. Yu, T. W. Xu (2006) J. Appl. Polym. Sci. 100, 2238.

    Article  CAS  Google Scholar 

  16. D. Wu, L. Wu, J. J. Woo, S. H. Yun, S. J. Seo, T. W. Xu, S. H. Moon (2010) J. Membr. Sci. 348, 167.

    Article  CAS  Google Scholar 

  17. X. Zhang, Y. Chen, A. H. Konsowa, X. Zhu, J.C. Crittenden (2009) Sep. Purif. Technol. 70, 71.

    Article  CAS  Google Scholar 

  18. L. Xu, H. K. Lee (2009) J. Chromatogr. A 1216, 6549.

    Article  CAS  Google Scholar 

  19. G. Nabiyouni, D. Ghanbari, A. Yousofnejad, M. Seraj (2014) J. Ind. Eng. Chem. 20, 3425.

    Article  CAS  Google Scholar 

  20. J. Saffari, D. Ghanbari, N. Mir, K. Khandan-Barani (2014) J. Ind. Eng. Chem. 20, 4119.

    Article  CAS  Google Scholar 

  21. D. Ghanbari, M. Salavati-Niasari, M. Ghasemi-Kooch (2014) J. Ind. Eng. Chem. 20, 3970.

    Article  CAS  Google Scholar 

  22. T. W. Xu, W. H. Yang, B. L. He (2001) Chem. Eng. Sci. 56, 5343.

    Article  CAS  Google Scholar 

  23. H. Strathmann, Electrodialysis and Related Processes , Membrane Separations Technology Principles and Applications, (Elsevier, New York, 1995).

    Google Scholar 

  24. R. Scherer, A. M. Bernardes, M. M. C. Forte, J. Z. Ferreira, C. A. Ferreira (2001) Mater. Chem. Phys. 71, 131.

    Article  CAS  Google Scholar 

  25. W. Cui, J. Kerres, G. Eigenberger (1998) Sep. Purif. Technol. 14, 145.

    Article  CAS  Google Scholar 

  26. R. K. Nagarale, V. K. Shahi, R. Rangarajan (2005) J. Membr. Sci. 248, 37.

    Article  CAS  Google Scholar 

  27. G. S. Gohil, V. V. Binsu, V. K. Shahi (2006) J. Membr. Sci. 280, 210.

    Article  CAS  Google Scholar 

  28. J. Schauer, V. Kudela, K. Richau, R. Mohr (2006) Desalination 198, 256.

    Article  CAS  Google Scholar 

  29. L. Lebrun, E. Da Silva, G. Pourcelly, M. Métayer (2003) J. Membr. Sci. 227, 95.

    Article  CAS  Google Scholar 

  30. D. R. Lide, CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton, 2007).

    Google Scholar 

  31. A. R. Khodabakhshi, S. S. Madaeni, S. M. Hosseini (2011) Sep. Purif. Technol. 77, 220.

    Article  CAS  Google Scholar 

  32. A. R. Khodabakhshi, S. S. Madaeni, S. M. Hosseini (2011) Polym. Int. 60, 466.

    Article  CAS  Google Scholar 

  33. Y. Tanaka, Ion Exchange Membranes Fundamentals And Applications , Membrane Science and Technology Series, Vol. 12, (Elsevier, Netherlands, 2007).

    Google Scholar 

  34. S. Ovtar, D. Lisjak, M. Drofenik (2009) J. Colloid Interface Sci. 337, 456.

    Article  CAS  Google Scholar 

  35. C. Klaysom, S. H. Moon, B. P. Ladewig, G. Q. M. Lu, L. Wang (2011) J. Colloid Interface Sci. 363, 431.

    Article  CAS  Google Scholar 

  36. M. Y. Kariduraganavar, R. K. Nagarale, A. A. Kittur, S. S. Kulkarni (2006) Desalination 197, 225.

    Article  CAS  Google Scholar 

  37. V. K. Shahi, S. K. Thampy, R. Rangarajan (1999) J. Membr. Sci. 158, 77.

    Article  CAS  Google Scholar 

  38. W. A. Kaczmarek, B. W. Ninham (1995) Mater. Chem. Phys. 40, 21.

    Article  CAS  Google Scholar 

  39. S. M. Hosseini, S. S. Madaeni, A. R. Heidari, A. Amirimehr (2012) Desalination 284, 191.

    Article  CAS  Google Scholar 

  40. P. Długolecki, K. Nymeijer, S. Metz, M. Wessling (2008) J. Membr. Sci. 319, 214.

    Article  Google Scholar 

  41. V. K. Shahi, G. S. Trivedi, S. K. Thampy, R. Rangarajan (2003) J. Colloid Interface Sci. 262, 566.

    Article  CAS  Google Scholar 

  42. P. V. Vyas, B. G. Shah, G. S. Trivedi, P. Ray, S. K. Adhikary, R. Rangarajan (2001) J. Membr. Sci. 187, 39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Laboratory of Functional Membranes (University of Science and Technology of China) for providing PPO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhad Heidary or Ali Nemati Kharat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidary, F., Kharat, A.N. & Khodabakhshi, A.R. Preparation, Characterization and Transport Properties of Novel Cation-Exchange Nanocomposite Membrane Containing BaFe12O19 Nanoparticles. J Clust Sci 27, 193–211 (2016). https://doi.org/10.1007/s10876-015-0920-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0920-8

Keywords

Navigation