Skip to main content
Log in

Convenient Fullerene Derivatization: A Solvothermal Method for the Acquisition of Polyarylated Fullerenes with Aryl Group Number Above Five

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Multi-modificated [60]fullerenes have better compatibility and application possibility than parent or mono-modificated C60. Friedel–Crafts reaction of chlorofullerene is a low-cost way to acquire useful multifunctional [60]fullerenes, yet products obtained by which bearing more than six function groups are rarely involved owing to their low yields. Herein chlorofullerene oligomer (CFO), a by-product during C60Cl6 synthesis, was used for fullerene phenylation by a facile solvothermal method and the insoluble CFO was converted completely into highly phenylated fullerenes with good solubility in common organic solvents. Two phenylfullerenes among the product, C60Ph9OH and C60Ph12O2, were isolated for spectroscopic characterizations. The electrochemical properties of the two compounds were as well investigated for the first time which exhibit electroreductions with distinct negative potential shifts relative to C60. So the solvothermal approach provides convenient production of polyfunctional fullerenes and paves the way for their promising application investigation in material science.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Pierrat, C. Réthoré, T. Muller, and S. Bräse (2009). Chem. Eur. J. 15, 11458–11460.

    Article  CAS  Google Scholar 

  2. J. Li, M. Zhang, B. Sun, G. Xing, Y. Song, H. Guo, Y. Chang, Y. Ge, and Y. Zhao (2012). Carbon 50, 460–469.

    Article  CAS  Google Scholar 

  3. Y. J. Cheng, M. H. Liao, C. Y. Chang, W. S. Kao, C. E. Wu, and C. S. Hsu (2011). Chem. Mater. 23, 4056–4062.

    Article  CAS  Google Scholar 

  4. M. D. Tzirakis and M. Orfanopoulos (2013). Chem. Rev. 113, 5262–5321.

    Article  CAS  Google Scholar 

  5. Y. Matsuo and E. Nakamura (2008). Chem. Rev. 108, 3016–3028.

    Article  CAS  Google Scholar 

  6. P. R. Birkett, A. G. Avent, A. D. Darwish, I. Hahn, H. W. Kroto, G. J. Langley, J. O. Loughlin, R. Taylor, and D. R. M. Walton (1997). J. Chem. Soc. Perk. Trans. 2, (6), 1121–1126.

    Article  Google Scholar 

  7. O. A. Troshina, P. A. Troshin, A. S. Peregudov, V. I. Kozlovskiy, J. Balzarini, and R. N. Lyubovskaya (2007). Org. Biomol. Chem. 5, 2783–2791.

    Article  CAS  Google Scholar 

  8. A. A. Goryunkov, N. S. Ovchinnikova, I. V. Trushkov, and M. A. Yurovskaya (2007). Russ. Chem. Rev. 76, (4), 289–312.

    Article  CAS  Google Scholar 

  9. P. A. Troshin, E. A. Khakina, A. S. Peregudov, D. V. Konarev, I. V. Soulimenkov, S. M. Peregudova, and R. N. Lyubovskaya (2010). Eur. J. Org. Chem. 2010, 3265–3268.

    Article  Google Scholar 

  10. E. A. Khakina, A. A. Yurkova, A. S. Peregudov, S. I. Troyanov, V. V. Trush, A. I. Vovk, A. V. Mumyatov, V. M. Martynenko, J. Balzarini, and P. A. Troshin (2012). Chem. Commun. 48, 7158–7160.

    Article  CAS  Google Scholar 

  11. A. Iwashita, Y. Matsuo, and E. Nakamura (2007). Angew. Chem. Int. Ed. 46, 3513–3516.

    Article  CAS  Google Scholar 

  12. M. Hashiguchi, K. Watanabe, and Y. Matsuo (2011). Org. Biomol. Chem. 9, 6417–6421.

    Article  CAS  Google Scholar 

  13. S. I. Troyanov and E. Kemnitz (2007). Chem. Commun. 26, 2707–2709.

    Article  Google Scholar 

  14. H. Liang, K. Dai, R. F. Peng, and S. J. Chu (2014). Chem. Eur. J. 20, 15742–15745.

    Article  CAS  Google Scholar 

  15. P. R. Birkett, A. G. Avent, A. D. Darwish, H. W. Kroto, R. Taylor, and D. R. M. Walton (1993). J. Chem. Soc. Chem. Commun. 15, 1230–1232.

    Article  Google Scholar 

  16. A. A. Yurkova, E. A. Khakina, S. I. Troyanov, A. Chernyak, L. Shmygleva, A. S. Peregudov, V. M. Martynenko, Y. A. Dobrovolskiy, and P. A. Troshin (2012). Chem. Commun. 48, 8916–8918.

    Article  CAS  Google Scholar 

  17. I. V. Kuvychko, A. V. Streletskii, N. B. Shustova, K. Seppelt, T. Drewello, A. A. Popov, S. H. Strauss, and O. V. Boltalina (2010). J. Am. Chem. Soc. 132, 6443–6462.

    Article  CAS  Google Scholar 

  18. P. R. Birkett, A. G. Avent, A. D. Darwish, H. W. Kroto, R. Taylor, and D. R. M. Walton (1996). Chem. Commun. 10, 1231–1232.

    Article  Google Scholar 

  19. L. Echegoyen and L. E. Echegoyen (1998). Acc. Chem. Res. 31, 593–601.

    Article  CAS  Google Scholar 

  20. L. L. Deng, S. L. Xie, C. Yuan, R. F. Liu, J. Feng, L. C. Sun, X. Lu, S. Y. Xie, R. B. Huang, and L. S. Zheng (2013). Sol. Energy Mater. Sol. Cells. 111, 193–199.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Ph.D. Fund of Southwest University of Science and Technology (No. 11zx7143, No. 13zx7104), the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (No. 11zxfk26, No. 13zxfk09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., Cui, B., Dai, K. et al. Convenient Fullerene Derivatization: A Solvothermal Method for the Acquisition of Polyarylated Fullerenes with Aryl Group Number Above Five. J Clust Sci 27, 115–125 (2016). https://doi.org/10.1007/s10876-015-0914-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0914-6

Keywords

Navigation