Skip to main content
Log in

Growth and Plasma Functionalization of Carbon Nanotubes

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This review presents recent results about the growth of vertically aligned carbon nanotubes (VACNTs) by plasma enhanced chemical vapor deposition (PECVD) and water assisted CVD. Modification of VACNTs by surface specific plasma treatments as well as by MnO2 electrodeposition, allows the optimization of the CNTs physico-chemical properties. Incorporation of oxygen and nitrogen functional groups by oxygen plasma, water plasma and nitrogen plasma are discussed in detail. The surface modification not only decorates the CNTs with desired functional groups, but also increases their surface area and makes them suitable for electrochemical, biological and environmental applications. In order to study the effects of surface functionalization on the CNTs properties, electrochemical and adsorption/desorption measurements were carried out. Both plasma treatments and manganese oxide electrodeposition improve the specific capacitance of the CNTs. Nanocomposites of CNTs/MnO2 show high specific capacitance values of up to 750 Fg−1. In addition, gas–surface interactions between functionalized and non-functionalized nanotubes, and volatile organic compounds, clearly show enhanced adsorption properties of the surface-modified nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Ijima (1991). Lett. Nat. 354, 56–58.

    Article  Google Scholar 

  2. S. Iijima and T. Ichihashi (1993). Nature 363, 603–605.

    Article  CAS  Google Scholar 

  3. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vasquez, and R. Beyers (1993). Nature 363, 605–607.

    Article  CAS  Google Scholar 

  4. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson (1996). Nature 381, 678–680.

    Article  CAS  Google Scholar 

  5. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy (1998). Phys. Rev. B 58, (15), 14013–14019.

    Article  CAS  Google Scholar 

  6. B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, and H. D. Espinosa (2008). Nat. Nanotechnol. 3, 626–631.

    Article  CAS  Google Scholar 

  7. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen (2001). Phys. Rev. Lett. 87, 215502.

    Article  CAS  Google Scholar 

  8. T. Belin and F. Epron (2005). Mater. Sci. Eng. B 119, 105–118.

    Article  Google Scholar 

  9. E. T. Thostenson, E. T. Z Ren, and T.-W. Chou (2001). Compos. Sci. Technol. 61, 1899–1912.

    Article  CAS  Google Scholar 

  10. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu (2005). Phys. Rev. Lett. 95, 086601.

    Article  CAS  Google Scholar 

  11. S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer (1998). Science 280, 1744–1746.

    Article  CAS  Google Scholar 

  12. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerlings, and C. dekker (1997). Nature 386, 474–477.

    Article  CAS  Google Scholar 

  13. C. V. Haesendonck, L. Stockman, R. J. M. Vullers, Y. Bruynseraede, L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J. P. Heremans, and C. H. Olk (1997). Surf. Sci. 386, 279–289.

    Article  Google Scholar 

  14. J. C. Charlier (2002). Acc. Chem. Res. 35, 1063–1069.

    Article  CAS  Google Scholar 

  15. E. V. Hooijdonk, C. Bittencourt, R. Snyders, and J. F. Colomer (2013). Beilstein J. Nanotechnol. 4, 129–152.

    Article  Google Scholar 

  16. C. N. R. Rao and A. Govindaraj, Nanotubes and Nanowires, 2nd Edition, RSC Nanoscience & Nanotechnology (2011). doi:10.1039/9781849732840-00001.

  17. M. Kumar and Y. Ando (2010). J. Nanosci. Nanotechnol. 10, 3739–3758.

    Article  CAS  Google Scholar 

  18. R. T. K. Baker and D. J. C. Yates, Filamentous Carbon Formation Over Iron Surfaces (1983). doi:10.1021/bk-1983-0202.ch001. ISBN13: 9780841207455, eISBN: 9780841209848.

  19. A. Gorbunov, O. Jost, W. Pompe, and A. Graff (2002). Carbon 40, 113–118.

    Article  CAS  Google Scholar 

  20. E. F. Kukovitsky, S. G. Lvov, and N. A. Sainov (2000). Chem. Phys. Lett. 317, 65–70.

    Article  CAS  Google Scholar 

  21. Y. Chen and J. Zhang (2011). Carbon 49, 3316–3324.

    Article  CAS  Google Scholar 

  22. S. Hofmann, C. Ducati, and J. Robertson (2003). Appl. Phys. Lett. 83, (1), 135–137.

    Article  CAS  Google Scholar 

  23. F. Javier del Campo, J. García-Céspedes, F. Xavier Muñoz, and E. Bertran (2008). Electrochem. Commun. 10, 1242–1245.

    Article  CAS  Google Scholar 

  24. M. S. Bell, K. B. K. Teo, R. G. Lacerda, W. I. Milne, D. B. Hash, and M. Meyyappan (2006). Pure Appl. Chem. 78, (6), 1117–1125.

    Article  CAS  Google Scholar 

  25. R. Amade, S. Hussain, I. R. Ocaña, and E. Bertran (2014). J. Environ. Eng. Ecol. Sci. 3, 1–7.

    Article  CAS  Google Scholar 

  26. S. Hussain, R. Amade, H. Moreno, and E. Bertran (2014). Diam. Relat. Mater. 49, 55–61.

    Article  CAS  Google Scholar 

  27. H. Lim, Z. Luo, Z. Shen, and J. Lin (2010). Nanoscale Res. Lett. 5, 1377–1386.

    Article  CAS  Google Scholar 

  28. V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson (2002). Chem. Phys. Lett. 361, 492–498.

    Article  CAS  Google Scholar 

  29. Z. Luo, S. Lim, Y. You, J. Miao, H. Gong, J. Zhang, S. Wang, J. Lin, and Z. Shen (2008). Nanotechnology 19, 255607.

    Article  Google Scholar 

  30. A. Gohier, T. M. Minea, M. A. Djouadi, and A. Granier (2007). J. Appl. Phys. 101, 054317.

    Article  Google Scholar 

  31. S. K. Srivastava, V. D. Vankar, and V. Kumar (2006). Thin Solid Films 515, 1552–1560.

    Article  CAS  Google Scholar 

  32. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima (2004). Science 306, 1362–1364.

    Article  CAS  Google Scholar 

  33. G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J. P. McVittie, J. Gibbons, and H. Dai (2005). PNAS 102, (45), 16141–16145.

    Article  CAS  Google Scholar 

  34. Y. Kim, W. Song, S. Y. Lee, S. Shrestha, C. Jeon, W. C. Choi, M. Kim, and C. Y. Park (2010). Jpn. J. Appl. Phys. 49, 085101.

    Article  Google Scholar 

  35. X. Yang, L. Yuan, V. K. Peterson, Y. Yin, A. I. Minett, and A. T. Harris (2011). J. Phys. Chem. C 115, 14093–14097.

    Article  CAS  Google Scholar 

  36. C. Mattevi, C. T. Wirth, S. Hofmann, R. Blume, M. Cantoro, C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schloegl, and J. Robertson (2008). J. Phys. Chem. C 112, 12207–12213.

    Article  CAS  Google Scholar 

  37. E. Teblum, Y. Gofer, C. L. Pint, and G. D. Nessim (2012). J. Phys. Chem. C 116, 24522–24528.

    Article  CAS  Google Scholar 

  38. K. Xie, M. Muhler, and W. Xia (2013). Ind. Eng. Chem. Res. 52, (39), 14081–14088. doi:10.1021/ie401829e.

    Article  CAS  Google Scholar 

  39. S. Hussain, R. Amade, and E. Bertran (2014). Mater. Chem. Phys. 148, 914–922.

    Article  CAS  Google Scholar 

  40. J. J. Nguyen, T. L. Bougher, P. P. S. S. Abadi, and A. Sharma (2013). J. Micro Nano-Manuf. 1, 014501–014505.

    Article  Google Scholar 

  41. S. Hussain, R. Amade, E. Jover, and E. Bertran (2012). Nanotechnology 23, 385604.

    Article  CAS  Google Scholar 

  42. J. E. Fischer, in Y. Gogotsi (ed.), Carbon Nanotubes: Structure and Properties Nanotubes and Nanofibers (Taylor Francis, Boca Raton, FL, 2006), p. 36.

  43. S. Hussain, R. Amade, E. Jover, and E. Bertran (2013). Sci. World J. Article ID 832581, 8.

  44. T. Xu, J. Yang, J. Liu, and Q. Fu (2007). Appl. Surf. Sci. 253, 8945–8951.

    Article  CAS  Google Scholar 

  45. Y. Yu, C. Cui, W. Qian, Q. Xie, C. Zheng, C. Kong, and F. Wei (2013). Asia-Pac. J. Chem. Eng. 8, 234–245.

    Article  CAS  Google Scholar 

  46. C. Chen, B. Liang, A. Ogino, X. Wang, and M. Nagatsu (2009). J. Phys. Chem. C 113, 7659–7665.

    Article  CAS  Google Scholar 

  47. E. Saito, E. F. Antunes, H. Zanin, F. R. Marciano, A. O. Lobo, V. J. Trava-Airoldi, and E. J. Corata (2014). J. Electrochem. Soc. 161, (5), H321–H325.

    Article  CAS  Google Scholar 

  48. L. Vandsburger, S. Coulombe, and J. L. Meunier (2013). J. Phys. D Appl. Phys. 46, 485301.

    Article  Google Scholar 

  49. B. Zhao, L. Zhang, X. Wang, and J. Yang (2012). Carbon 50, 2710–2716.

    Article  CAS  Google Scholar 

  50. Z. Zanolli, R. Leghrib, A. Felten, J.-J. Pireaux, E. Llobet, and J.-C. Charlier (2011). ACS Nano. 5, 4592–4599.

    Article  CAS  Google Scholar 

  51. H. Muguruma, Y. Shibayama, and Y. Matsui (2008). Biosens. Bioelectron. 23, 827–832.

    Article  CAS  Google Scholar 

  52. C. Chen, A. Ogino, X. Wang, and M. Nagatsu (2010). Appl. Phys. Lett. 96, 131504.

    Article  Google Scholar 

  53. K. Peng, L. Q. Liu, H. Li, H. Meyer, and Z. Zhang (2011). Carbon 49, 70–76.

    Article  CAS  Google Scholar 

  54. S. Lee, J.-W. Peng, and C. H. Liu (2008). Carbon 46, 2124–2132.

    Article  CAS  Google Scholar 

  55. Z. Hou, B. Cai, H. Liu, and D. Xu (2008). Carbon 46, 405–413.

    Article  CAS  Google Scholar 

  56. D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu, and T. J. Bandosz (2009). Adv. Funct. Mater. 19, 438–447.

    Article  CAS  Google Scholar 

  57. L. Li, E. Liu, H. Shen, Y. Yang, Z. Huang, X. Xiang, and Y. Tian (2011). J. Solid State Chem. 15, 175–182.

    CAS  Google Scholar 

  58. S. Hussain, R. Amade, E. Jover, and E. Bertran (2013). J. Mater. Sci. 48, 7620–7628.

    Article  CAS  Google Scholar 

  59. W. Shen, Z. Li, and Y. Liu (2008). Recent Pat. Chem. Eng. 1, 27–40.

    Article  CAS  Google Scholar 

  60. C. Jones and E. Sammann (1990). Carbon 28, (4), 509–514.

    Article  CAS  Google Scholar 

  61. H. Wang, R. Cote, G. Faubert, D. Guay, and J. P. Dodelet (1999). J. Phys. Chem. B 103, 2042–2049.

    Article  CAS  Google Scholar 

  62. A. Toth, K. V. Voitko, O. Bakalinska, G. P. Prykhodko, I. Bertoti, A. Martínez-Alonso, J. M. D. Tascon, V. M. Gunko, and K. Laszlo (2012). Carbon 50, 577–585.

    Article  CAS  Google Scholar 

  63. J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, and K. M. Thomas (1995). Carbon 33, 1641–1653.

    Article  CAS  Google Scholar 

  64. S. Bhattacharyya, J. Hong, and G. Turban (1998). J. Appl. Phys. 83, 3917–3919.

    Article  CAS  Google Scholar 

  65. S. Biniak, G. Szymanski, J. Siedlewski, and A. Swiatkowski (1997). Carbon 35, 1799–1810.

    Article  CAS  Google Scholar 

  66. J. Yu, T. Ma, and S. Liu (2011). Phys. Chem. Chem. Phys. 13, 3491–3501.

    Article  CAS  Google Scholar 

  67. Y. Yu, J. C. Yu, J.-G. Yu, Y.-C. Kwok, Y.-K. Che, J.-C. Zhao, L. Ding, W.-K. Ge, and P.-K. Wong (2005). Appl. Catal. A Gen. 289, 186–196.

    Article  CAS  Google Scholar 

  68. Z. Wen, S. Ci, S. Mao, S. Cui, G. Lu, K. Yu, S. Luo, Z. He, and J. Chen (2013). J. Power Sources 234, 100–106.

    Article  CAS  Google Scholar 

  69. P. Wu, N. Du, H. Zhang, J. Yu, and D. Yang (2010). J. Phys. Chem. C 114, 22535–22538.

    Article  CAS  Google Scholar 

  70. S. M. Abbas, S. T. Hussain, S. Ali, N. Ahmad, N. Ali, and S. Abbas (2013). J. Mater. Sci. 48, 5429–5436.

    Article  CAS  Google Scholar 

  71. J. S. Park, J. M. Lee, S. K. Hwang, S. H. Lee, H.-J. Lee, B. R. Lee, H. I. Park, J.-S. Kim, S. Yoo, M. H. Song, and S. O. Kim (2012). J. Mater. Chem. 22, 12695–12700.

    Article  CAS  Google Scholar 

  72. A. D. Su, X. Zhang, A. Rinaldi, S. T. Nguyen, H. Liu, Z. Lei, L. Lu, and H. M. Duong (2013). Chem. Phys. Lett. 561–562, 68–73.

    Article  Google Scholar 

  73. H. Karimi-Maleh, P. Biparva, and M. Hatami (2013). Biosens. Bioelectron. 48, 270–275.

    Article  CAS  Google Scholar 

  74. B. E. Conway Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer Academic/Plenum Publishers, NewYork, NY, 1999).

    Book  Google Scholar 

  75. Y. Hou, Y. Cheng, T. Hobson, and J. Liu (2010). NanoLetters 10, 2727–2733.

    Article  CAS  Google Scholar 

  76. C.-T. Hsieh and H. Teng (2002). Carbon 40, (5), 667–674.

    Article  CAS  Google Scholar 

  77. X. Peng, Y. Li, Z. Luan, Z. Di, H. Wang, B. Tian, and Z. Jia (2003). Chem. Phys. Lett. 376, 154–158.

    Article  CAS  Google Scholar 

  78. M. Kah, X. Zhang, M. T. Jonker, and T. Hofmann (2011). Environ. Sci. Technol. 45, 6011–6017.

    Article  CAS  Google Scholar 

  79. K. Yang, W. Wu, Q. Jing, and L. Zhu (2008). Environ. Sci. Technol. 42, 7931–7936.

    Article  CAS  Google Scholar 

  80. D. Lin and B. Xingt (2008). Environ. Sci. Technol. 42, 7254–7259.

    Article  CAS  Google Scholar 

  81. K. Yang, W. Wu, Q. Jing, W. Jiang, and B. Xing (2010). Environ. Sci. Technol. 44, 3021–3027.

    Article  CAS  Google Scholar 

  82. R. Amade, E. Jover, B. Caglar, T. Mutlu, and E. Bertran (2011). J. Power Sources 196, 5779–5783.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Bertran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Amade, R., Jover, E. et al. Growth and Plasma Functionalization of Carbon Nanotubes. J Clust Sci 26, 315–336 (2015). https://doi.org/10.1007/s10876-015-0862-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0862-1

Keywords

Navigation