Skip to main content
Log in

Biosynthesis and Structural Characterization of Selenium Nanoparticles Using Gliocladium roseum

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present study, spherical, crystalline, monodispersed selenium nanoparticles were biosynthesized by an economical, environment friendly, easy, sustainable and green methodology using fungi Gliocladium roseum. The biosynthesized selenium nanoparticles were characterized by using UV Spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction (XRD) spectroscopy and scanning electron microscopy with energy dispersive X-ray (SEM-EDX). The size of biosynthesized selenium nanoparticles obtained by TEM was in the range of 20–80 nm. There were some large particles of more than 100 nm but less than 150 nm also seen. XRD spectroscopy analyses revealed that biosynthesized selenium nanoparticles were hexagonal crystalline in nature. The FTIR spectroscopy study confirms presence of functional groups which were associated with proteins and biomolecules excreted extracellularly by fungi. These proteins and biomolecules believe to serve as template for reduction and stabilization of selenium nanoparticles. Moreover, these biomolecules were may also help in controlling size and aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Navarro-Alarcon and C. Cabrera-Vique (2008). Sci. Total Environ. 400, 115–141.

    Article  CAS  Google Scholar 

  2. M. P. Rayman (2005). Proc. Nutr. Soc. 64, 527–542.

    Article  CAS  Google Scholar 

  3. H. Zeng and G. F. Combs Jr (2008). J. Nutr. Biochem. 19, 1–7.

    Article  Google Scholar 

  4. N. Srivastava and M. Mukhopadhyay (2013). Powder Technol. 244, 26–29.

    Article  CAS  Google Scholar 

  5. P. Knekt, J. Marniemi, L. Teppo, M. Heliövaara, and A. Aromaa (1998). Am. J. Epidemiol. 148, 975–982.

    Article  CAS  Google Scholar 

  6. M. P. Rayman (2000). Lancet 356, 233–241.

    Article  CAS  Google Scholar 

  7. Y.-Y. Xia (2007). Mater. Lett. 61, 4321–4324.

    Article  CAS  Google Scholar 

  8. W. Zhang, Z. Chen, H. Liu, L. Zhang, P. Gao, and D. Li (2011). Colloids Surf. B: Biointerfaces 88, 196–201.

    Article  CAS  Google Scholar 

  9. S. K. Torres, V. L. Campos, C. G. León, S. M. Rodríguez-Llamazares, S. M. Rojas, M. González, C. Smith, and M. A. Mondaca (2012). J. Nanopart. Res. 14, 1–9.

    Google Scholar 

  10. K. S. Prasad, H. Patel, T. Patel, K. Patel, and K. Selvaraj (2013). Colloids Surf. B: biointerfaces 103, 261–266.

    Article  CAS  Google Scholar 

  11. C. H. Ramamurthy, K. S. Sampath, P. Arunkumar, M. S. Kumar, V. Sujatha, K. Premkumar, and C. Thirunavukkarasu (2013). Bioprocess Biosyst. Eng. 36, 1131–1139.

    Article  CAS  Google Scholar 

  12. Z. Sheikhloo, M. Salouti, and F. Katiraee (2011). J. Clust Sci. 22, 661–665.

    Article  CAS  Google Scholar 

  13. N. Srivastava and M. Mukhopadhyay (2014). J. Clust. Sci.. doi:10.1007/s10876-014-0726-0.

    Google Scholar 

  14. S. Dhanjal and S. Cameotra (2010). Microb. Cell Fact. 9, 1–11.

    Article  Google Scholar 

  15. T. Wang, L. Yang, B. Zhang, and J. Liu (2010). Colloids Surf. B: biointerfaces 80, 94–102.

    Article  CAS  Google Scholar 

  16. K. S. Prasad and K. Selvaraj (2014). Biol. Trace Elem. Res. 157, 275–283.

    Article  CAS  Google Scholar 

  17. G. Sharma, A. R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J.-S. Nam, and S.-S. Lee (2014). Molecules 19, 2761–2770.

    Article  Google Scholar 

  18. N. Jain, A. Bhargava, S. Majumdar, J. C. Tarafdar, and J. Panwar (2011). Nanoscale 3, 635–641.

    Article  CAS  Google Scholar 

  19. P. K. Kar, S. Murmu, S. Saha, V. Tandon, and K. Acharya (2014). PLoS ONE 9, e84693.

    Article  Google Scholar 

  20. J. Sarkar, P. Dey, S. Saha, K. Acharya, Mycosynthesis of selenium nanoparticles, Micro & Nano Letters, Institution of Engineering and Technol. 599–602 (2011).

  21. M. Mehta, M. Mukhopadhyay, R. Christian, and N. Mistry (2012). Powder Technol. 226, 213–221.

    Article  CAS  Google Scholar 

  22. A. Mohammed Fayaz, M. Girilal, M. Rahman, R. Venkatesan, and P. T. Kalaichelvan (2011). Process Biochem. 46, 1958–1962.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the SAIF-AIIMS (All India Institute of Medical Sciences) New Delhi, Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology Bombay (IIT B), Mumbai and Department of Metallurgical Engineering & Material Science, IIT B for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Mukhopadhyay, M. Biosynthesis and Structural Characterization of Selenium Nanoparticles Using Gliocladium roseum . J Clust Sci 26, 1473–1482 (2015). https://doi.org/10.1007/s10876-014-0833-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0833-y

Keywords

Navigation