Skip to main content
Log in

A Density Functional Investigation on the Actinide Element and Silicon: AnSi (An = Ac–Lr) Diatomic Systems

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Bond lengths, vibrational frequencies, electronic properties, magnetic properties, and highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO–LUMO) gaps of the AnSi (An = Ac–Lr) diatomic systems are studied by using the density functional method with relativistic effect being taken into accounts. The calculated natural populations of the AnSi (An = Ac–Lr) diatomic systems show that the charges are transferred mainly from 7s 2 to 6d, and most of 5f subshell in the AnSi is inert and without involving chemical bonding. The calculated HOMO–LUMO gaps of the AnSi (An = Ac–Lr) diatomic systems are increased and exhibit oscillating behaviors from AcSi to EsSi. According to the calculated magnetic moments of AnSi (An = Ac–Lr), it is exhibited that total magnetic moments depend on the electrons in 5f subshell which generates the magnetic properties of the AnSi diatoms. The calculated results are compared with available theoretical and experimental results, a good agreement is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. G. Xu, Z. G. Zhang, Y. A. Feng, and W. J. Zheng (2010). Chem. Phys. Lett. 498, 22–26.

    Article  CAS  Google Scholar 

  2. M. Ohara, K. Miyajima, A. Pramann, A. Nakajima, and K. Kaya (2002). J. Phys. Chem. A 106, 3702.

    Article  CAS  Google Scholar 

  3. R. N. Zhao, Z. Ren, J. T. Bai, P. Guo, and J. G. Han (2006). J. Phys. Chem. A 110, 4071.

    Article  CAS  Google Scholar 

  4. R. N. Zhao, J. G. Han, and Y. H. Duan (2014). Thin Solid Films 556, 571.

    Article  CAS  Google Scholar 

  5. A. Grubisic, Y. J. Ko, H. Wang, and K. H. Bowen (2009). J. Am. Chem. Soc. 131, 10783.

    Article  CAS  Google Scholar 

  6. G. F. Zhao, J. M. Sun, Y. Z. Gu, and Y. X. Wang (2009). J. Chem. 131, 114312.

    Google Scholar 

  7. T. T. Cao, X. J. Feng, L. X. Zhao, X. Liang, Y. M. Lei, and Y. H. Luo (2008). Eur. Phys. J. D. 49, 343.

    Article  CAS  Google Scholar 

  8. R. N. Zhao, J. G. Han, J. T. Bai, F. Y. Liu, and L. S. Sheng (2010). Chem. Phys. 372, 89.

    Article  CAS  Google Scholar 

  9. R. N. Zhao, J. G. Han, and L. S. Sheng (2010). Chem. Phys. 378, 82.

    Article  CAS  Google Scholar 

  10. J. G. Han, R. N. Zhao, and Y. H. Duan (2007). J. Phys. Chem. A 111, 2148–2155.

    Article  CAS  Google Scholar 

  11. M. Dolg, H. Stoll, A. Savin, and H. Preuss (1989). Theor. Chim. Acta 75, 173.

    Article  CAS  Google Scholar 

  12. H. J. Zhai, C. Q. Miao, S. D. Li, and L. S. Wang (2010). J. Phys. Chem. A 114, 12155.

    Article  CAS  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox Gaussian09 (Gaussian Inc, Wallingford, 2009).

    Google Scholar 

  14. S. Yagoubi, S. Heathman, A. Svane, G. Vaitheeswaran, P. Heines, J. C. Griveau, T. Le Bihan, M. Idiri, F. Wastin, and R. Caciuffo (2013). J. Alloys Compd. 546, 63–71.

    Article  CAS  Google Scholar 

  15. S. F. Matar and R. Poetgen (2012). Chem. Phys. Lett. 550, 88–93.

    Article  CAS  Google Scholar 

  16. B. Vlaisavljevich, P. Miro, C. J. Cramer, L. Gagliardi, I. Infante, and S. T. Liddle (2011). Chem. Eur. J. 17, 8424–8433.

    Article  CAS  Google Scholar 

  17. O. H. Krikorian and D. C. Hagerty (1990). J. Nucl. Mater. 171, 237.

    Article  CAS  Google Scholar 

  18. E. L. Jacobson, R. D. Freeman, A. G. Tharp, and A. W. Searcy (1969). J. Alloys Compd. 78, 4850.

    Google Scholar 

  19. J. Yang, J. Long, L. Yang, and D. Li (2013). J. Nucl. Mater. 443, 195–199.

    Article  CAS  Google Scholar 

  20. P. Boulet, F. Wastin, E. Colineau, J. C. Griveau, and J. Rebizant (2003). J. Phys. Condens. Matter. 15, S2305–S2308.

    Article  CAS  Google Scholar 

  21. F. Weigel, F. D. Wittmann, and R. Marquart (1977). J. Less. Common Met. 56, 47–53.

    Article  CAS  Google Scholar 

  22. F. Weigel and R. Marquart (1983). J Less Common Met. 90, 283.

    Article  CAS  Google Scholar 

  23. V. Milman, B. Winkler, and C. J. Pickard (2003). J. Nucl. Mater. 322, 165–179.

    Article  CAS  Google Scholar 

  24. J. G. Han and F. Hagelberg (2009). J. Comput. Theor. Nanosci. 6, 257–269.

    Article  CAS  Google Scholar 

  25. R. N. Zhao and J. G. Han. RSV Adv. submitted.

  26. R. N. Zhao, Y. H. Yuan, J. G. Han, and Y. H. Duan (2014). RSC Adv. 4, 59331.

Download references

Acknowledgments

This work is supported by Natural Science fund of China (11179035), Innovation Program of Shanghai Municipal, Education Commission (14YZ164 and 12YZ185) as well as Physical electronics disciplines (NO: 12XKJC01), and 973 fund of Chinese Ministry of Science and Technology (2010CB934504).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhong Yuan or Ju-Guang Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, RN., Yuan, Y. & Han, JG. A Density Functional Investigation on the Actinide Element and Silicon: AnSi (An = Ac–Lr) Diatomic Systems. J Clust Sci 26, 1143–1152 (2015). https://doi.org/10.1007/s10876-014-0803-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0803-4

Keywords

Navigation