Skip to main content

Advertisement

Log in

Synthesis and Characterization of Fluorapatite Nanoparticles Via a Mechanochemical Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanosized F-substituted hydroxyapatite (FA; Ca10(PO4)6(OH)2 − xFx) was synthesized with CaCO3, P2O5 and CaF2 as a precursor via a mechanochemical process. Different times of milling (10 min, 2, 4, 6, 8, 10, 12 and 14 h) and fluorine ion contents (0, 25, 50, 75 and 100 percent of substitution) were used to prepare the products. Transmission electron microscopy (TEM) analysis demonstrated that FA nanoparticles with an average diameter of 15–30 nm (at milling time of 10 h) were prepared. Finally, the bioactivity of optimal samples was investigated in simulated body fluid (SBF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Z. Le Geros and J. P. Le Geros Dense hydroxyapatite. in L. L. Hench and J. Wilson (eds.), Introduction to bioceramics (World Scientific, Singapore, 1993).

    Google Scholar 

  2. Y. Chen and X. Miao (2004). Ceram. Int. 30, 1961–1965.

    Article  CAS  Google Scholar 

  3. C. Shu, W. Yanwei, L. Hong, P. Zhengzheng, and Y. Kangde (2005). Ceram. Int. 31, 135.

    Article  Google Scholar 

  4. M. H. Fathi, E. MohammadiZahrani, and A. Zomorodian (2009). Mater. Lett. 63, 1195–1198.

    Article  CAS  Google Scholar 

  5. M. H. Fathi and E. MohammadiZahrani (2009). J. Cryst. Growth 311, 1392–1403.

    Article  CAS  Google Scholar 

  6. M. Kheradmandfard and M. H. Fathi (2010). J. Alloys Compd. 504, 141–145.

    Article  CAS  Google Scholar 

  7. A. Bianco, I. Cacciotti, M. Lombardi, L. Montanaro, E. Bemporad, and M. Sebastiani (2010). Ceram. Int. 36, 313–322.

    Article  CAS  Google Scholar 

  8. M. Kheradmandfard, M. H. Fathi, M. Ahangarian, and E. MohammadiZahrani (2012). Ceram. Int. 38, 169–175.

    Article  CAS  Google Scholar 

  9. W. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, and K. S. TenHuisen (2004). Biomaterials 25, 4647–4657.

    Article  CAS  Google Scholar 

  10. S. Kannan, J. H. G. Rocha, S. Agathopoulos, and J. M. F. Ferreira (2007). Acta Biomater. 3, 243–249.

    Article  CAS  Google Scholar 

  11. G. K. Williamson and W. H. Hall (1953). X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31.

    Article  CAS  Google Scholar 

  12. E. Landi, A. Tampieri, G. Celotti, and S. Sprio (2000). J. Eur. Ceram. Soc. 20, 2377–2387.

    Article  CAS  Google Scholar 

  13. T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, and E. B. Slamovich (2004). Biomaterials 25, 2111–2121.

    Article  CAS  Google Scholar 

  14. M. Bohner and J. Lemaitre (2009). Can bioactivity be tested in vitro with SBF solution. Biomaterials 30, 2175–2179.

    Article  CAS  Google Scholar 

  15. M. H. Fathi and E. Mohammadi Zahrani (2009). J. Alloys Compd. 475, 408–414.

    Article  CAS  Google Scholar 

  16. L. M. Rodriguez-Lorenzo, J. N. Hart, and K. A. Gross (2003). Biomaterials 24, 3777–3785.

    Article  CAS  Google Scholar 

  17. C. Suryanarayana (2001). Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184.

    Article  CAS  Google Scholar 

  18. Y. Chen and X. Miao (2005). Biomaterials 26, 1205–1210.

    Article  CAS  Google Scholar 

  19. K. Cheng, W. Weng, H. Wang, and S. Zhang (2005). Biomaterials 26, 6288–6295.

    Article  CAS  Google Scholar 

  20. M. Tatzber, M. Stemmer, H. Spiegel, C. Katzlberger, G. Haberhauer, and M. H. Gerzabek (2007). Environ. Chem. Lett. 5, 9–12.

    Article  CAS  Google Scholar 

  21. A. Eisazadeh, K. A. Kassim, and H. Nur (2010). J. Geotech. Eng. 15 D 1–10.

  22. B. Boonchom and C. Danvirutai (2009). J. Optoelectron. Biomed. Mat. 1, 115–123.

    Google Scholar 

  23. S. C. Liou and S. Y. Chen (2002). Biomaterials 23, 4541–4547.

    Article  CAS  Google Scholar 

  24. A. Bigi, E. Boanini, C. Capuccini, and M. Gazzano (2007). Inorg. Chim. Acta 360, 1009–1016.

    Article  CAS  Google Scholar 

  25. S. Z. Liuming Yan, D. Zhang, and Q. Feng (2011). Polymer 52, 881–892.

  26. J. M. Hughes, M. Cemeron, and K. D. Crawley (1989). Am. Miner. 74, 870–876.

    CAS  Google Scholar 

  27. C. C. Silva, D. Thomazini, A. G. Pinheiro, F. Lanciotti Jr, J. M. Sasaki, J. C. Goes, and A. S. B. Sombra (2002). J. Phys. Chem. Solids 63, 1745–1757.

    Article  CAS  Google Scholar 

  28. M.-X. Zhang and G.-J. Zhao (2012). ChemSusChem 5, 879–887.

    Article  CAS  Google Scholar 

  29. G.-J. Zhao, J.-Y. Liu, L.-C. Zhou, and K.-L. Han (2007). J. Phys. Chem. B 111, 8940–8945.

    Article  CAS  Google Scholar 

  30. G.-J. Zhao, B. H. Northrop, K.-L. Han, and P. J. Stang (2010). J. Phys. Chem. A 114, 9007–9013.

    Article  CAS  Google Scholar 

  31. G.-J. Zhao and K.-L. Han (2012). Acc. Chem. Res. 45, 404–413.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeinab Fereshteh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereshteh, Z., Fathi, M. & Mozaffarinia, R. Synthesis and Characterization of Fluorapatite Nanoparticles Via a Mechanochemical Method. J Clust Sci 26, 1041–1053 (2015). https://doi.org/10.1007/s10876-014-0793-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0793-2

Keywords

Navigation