Skip to main content

Advertisement

Log in

The Complexity of Being A20: From Biological Functions to Genetic Associations

  • Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

A20, encoded by TNFAIP3, is a critical negative regulator of immune activation. A20 is a ubiquitin editing enzyme with multiple domains, each of which mediates or stabilizes a key ubiquitin modification. A20 targets diverse proteins that are involved in pleiotropic immunologic pathways. The complexity of A20-mediated immunomodulation is illustrated by the varied effects of A20 deletion in different cell types and disease models. Clinically, the importance of A20 is highlighted by its extensive associations with human disease. A20 germline variants are associated with a wide range of inflammatory diseases, while somatic mutations promote development of B cell lymphomas. More recently, the discovery of A20 haploinsufficiency (HA20) has provided real world evidence for the role of A20 in immune cell function. Originally described as an autosomal dominant form of Behcet’s disease, HA20 is now considered a complex inborn error of immunity with a broad spectrum of immunologic and clinical phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Opipari AW Jr, Hu HM, Yabkowitz R, Dixit VM. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity. J Biol Chem. 1992;267:12424–7.

    Article  CAS  PubMed  Google Scholar 

  2. Ma A, Malynn BA. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol. 2012;12:774–85. https://doi.org/10.1038/nri3313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abbasi A, Forsberg K, Bischof F. The role of the ubiquitin-editing enzyme A20 in diseases of the central nervous system and other pathological processes. Front Mol Neurosci. 2015;8:21. https://doi.org/10.3389/fnmol.2015.00021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Musone SL, et al. Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet. 2008;40:1062–4. https://doi.org/10.1038/ng.202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Graham RR, et al. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet. 2008;40:1059–61. https://doi.org/10.1038/ng.200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dieguez-Gonzalez R, et al. Analysis of TNFAIP3, a feedback inhibitor of nuclear factor-kappaB and the neighbor intergenic 6q23 region in rheumatoid arthritis susceptibility. Arthritis Res Ther. 2009;11:R42. https://doi.org/10.1186/ar2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elsby LM, et al. Functional evaluation of TNFAIP3 (A20) in rheumatoid arthritis. Clin Exp Rheumatol. 2010;28:708–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dieudé P, et al. Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis. 2010;69:1958–64. https://doi.org/10.1136/ard.2009.127928.

    Article  PubMed  Google Scholar 

  9. Zhou Q, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67–73. https://doi.org/10.1038/ng.3459.

    Article  CAS  PubMed  Google Scholar 

  10. Bai W, Huo S, Li J, Shao J. Advances in the study of the ubiquitin-editing enzyme A20. Front Pharmacol. 2022;13:845262. https://doi.org/10.3389/fphar.2022.845262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wertz IE, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430:694–9. https://doi.org/10.1038/nature02794.

    Article  CAS  PubMed  Google Scholar 

  12. Lu TT, et al. Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme. Immunity. 2013;38:896–905. https://doi.org/10.1016/j.immuni.2013.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zammit NW, et al. Denisovan, modern human and mouse TNFAIP3 alleles tune A20 phosphorylation and immunity. Nat Immunol. 2019;20:1299–310. https://doi.org/10.1038/s41590-019-0492-0.

    Article  CAS  PubMed  Google Scholar 

  14. El Khouri E. et al. A critical region of A20 unveiled by missense TNFAIP3 variations that lead to autoinflammation. Elife. 2023;12. https://doi.org/10.7554/eLife.81280.

  15. Shembade N, Harhaj EW. Regulation of NF-kappaB signaling by the A20 deubiquitinase. Cell Mol Immunol. 2012;9:123–30. https://doi.org/10.1038/cmi.2011.59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kulathu Y, et al. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun. 2013;4:1569. https://doi.org/10.1038/ncomms2567.

    Article  CAS  PubMed  Google Scholar 

  17. Martens A, et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat Immunol. 2020;21:381–7. https://doi.org/10.1038/s41590-020-0621-9.

    Article  CAS  PubMed  Google Scholar 

  18. Bosanac I, et al. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-kappaB signaling. Mol Cell. 2010;40:548–57. https://doi.org/10.1016/j.molcel.2010.10.009.

    Article  CAS  PubMed  Google Scholar 

  19. Wertz IE, et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature. 2015;528:370–5. https://doi.org/10.1038/nature16165.

    Article  CAS  PubMed  Google Scholar 

  20. Shembade N, et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol. 2008;9:254–62. https://doi.org/10.1038/ni1563.

    Article  CAS  PubMed  Google Scholar 

  21. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J. 2009;28:513–22. https://doi.org/10.1038/emboj.2008.285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Razani B, et al. Non-catalytic ubiquitin binding by A20 prevents psoriatic arthritis-like disease and inflammation. Nat Immunol. 2020;21:422–33. https://doi.org/10.1038/s41590-020-0634-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li L, Soetandyo N, Wang Q, Ye Y. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta. 2009;1793:346–53. https://doi.org/10.1016/j.bbamcr.2008.09.013.

    Article  CAS  PubMed  Google Scholar 

  24. Düwel M, et al. A20 negatively regulates T cell receptor signaling to NF-kappaB by cleaving Malt1 ubiquitin chains. J Immunol. 2009;182:7718–28. https://doi.org/10.4049/jimmunol.0803313.

    Article  CAS  PubMed  Google Scholar 

  25. Gough P, Myles IA. Tumor necrosis factor receptors: pleiotropic signaling complexes and their differential effects. Front Immunol. 2020;11:585880. https://doi.org/10.3389/fimmu.2020.585880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Priem D, et al. A20 protects cells from TNF-induced apoptosis through linear ubiquitin-dependent and -independent mechanisms. Cell Death Dis. 2019;10:692. https://doi.org/10.1038/s41419-019-1937-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci U S A. 1996;93:6721-6725.https://doi.org/10.1073/pnas.93.13.6721.

  28. Meng Z, et al. A20/Nrdp1 interaction alters the inflammatory signaling profile by mediating K48- and K63-linked polyubiquitination of effectors MyD88 and TBK1. J Biol Chem. 2021;297:100811. https://doi.org/10.1016/j.jbc.2021.100811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Wilde K, et al. A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann Rheum Dis. 2017;76:585–92. https://doi.org/10.1136/annrheumdis-2016-209454.

    Article  CAS  PubMed  Google Scholar 

  30. Moll HP, et al. A20 regulates atherogenic interferon (IFN)-γ signaling in vascular cells by modulating basal IFNβ levels. J Biol Chem. 2014;289:30912–24. https://doi.org/10.1074/jbc.M114.591966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R, Ojcius DM. The role of NOD-like receptors in innate immunity. Front Immunol. 2023;14:1122586. https://doi.org/10.3389/fimmu.2023.1122586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Wang H, Kouadir M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128. https://doi.org/10.1038/s41419-019-1413-8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Das T, Chen Z, Hendriks RW, Kool M. A20/tumor necrosis factor α-induced protein 3 in immune cells controls development of autoinflammation and autoimmunity: lessons from mouse models. Front Immunol. 2018;9:104. https://doi.org/10.3389/fimmu.2018.00104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Duong BH, et al. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity. 2015;42:55–67. https://doi.org/10.1016/j.immuni.2014.12.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. VandeWalle L, et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 2014;512:69–73.

    Article  Google Scholar 

  36. Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol. 2015;16:689–97. https://doi.org/10.1038/ni.3206.

    Article  CAS  PubMed  Google Scholar 

  37. Onizawa M, et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat Immunol. 2015;16:618–27. https://doi.org/10.1038/ni.3172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee EG, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289:2350–4. https://doi.org/10.1126/science.289.5488.2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90. https://doi.org/10.1016/s0092-8674(03)00521-x.

    Article  CAS  PubMed  Google Scholar 

  40. Lim MCC, et al. Pathogen-induced ubiquitin-editing enzyme A20 bifunctionally shuts off NF-κB and caspase-8-dependent apoptotic cell death. Cell Death Differ. 2017;24:1621–31. https://doi.org/10.1038/cdd.2017.89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kattah MG, et al. A20 and ABIN-1 synergistically preserve intestinal epithelial cell survival. J Exp Med. 2018;215:1839–52. https://doi.org/10.1084/jem.20180198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Won M, et al. Novel anti-apoptotic mechanism of A20 through targeting ASK1 to suppress TNF-induced JNK activation. Cell Death Differ. 2010;17:1830–41. https://doi.org/10.1038/cdd.2010.47.

    Article  CAS  PubMed  Google Scholar 

  43. Adrianto I, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43:253–8. https://doi.org/10.1038/ng.766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pasula S, et al. Systemic lupus erythematosus variants modulate the function of an enhancer upstream of TNFAIP3. Front Genet. 2022;13:1011965. https://doi.org/10.3389/fgene.2022.1011965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim T, Bae SC, Kang C. Synergistic activation of NF-kappaB by TNFAIP3 (A20) reduction and UBE2L3 (UBCH7) augment that synergistically elevate lupus risk. Arthritis Res Ther. 2020;22:93. https://doi.org/10.1186/s13075-020-02181-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koumakis E, et al. Brief report: candidate gene study in systemic sclerosis identifies a rare and functional variant of the TNFAIP3 locus as a risk factor for polyautoimmunity. Arthritis Rheum. 2012;64:2746–52. https://doi.org/10.1002/art.34490.

    Article  CAS  PubMed  Google Scholar 

  47. Odqvist L, et al. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis. 2019;78:1363–70. https://doi.org/10.1136/annrheumdis-2019-215434.

    Article  CAS  PubMed  Google Scholar 

  48. Nocturne G, et al. Germline variation of TNFAIP3 in primary Sjögren’s syndrome-associated lymphoma. Ann Rheum Dis. 2016;75:780–3. https://doi.org/10.1136/annrheumdis-2015-207731.

    Article  CAS  PubMed  Google Scholar 

  49. Martens A, van Loo G. A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring Harb Perspect Biol. 2020;12. https://doi.org/10.1101/cshperspect.a036418.

  50. Montúfar-Robles I, et al. Polymorphisms in TNFAIP3, but not in STAT4, BANK1, BLK, and TNFSF4, are associated with susceptibility to Takayasu arteritis. Cell Immunol. 2021;365:104375. https://doi.org/10.1016/j.cellimm.2021.104375.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu L, et al. Characteristics of A20 gene polymorphisms and clinical significance in patients with rheumatoid arthritis. J Transl Med. 2015;13:215. https://doi.org/10.1186/s12967-015-0566-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morgan AW, et al. Evaluation of the rheumatoid arthritis susceptibility loci HLA-DRB1, PTPN22, OLIG3/TNFAIP3, STAT4 and TRAF1/C5 in an inception cohort. Arthritis Res Ther. 2010;12:R57. https://doi.org/10.1186/ar2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shimane K, et al. The association of a nonsynonymous single-nucleotide polymorphism in TNFAIP3 with systemic lupus erythematosus and rheumatoid arthritis in the Japanese population. Arthritis Rheum. 2010;62:574–9. https://doi.org/10.1002/art.27190.

    Article  CAS  PubMed  Google Scholar 

  54. Momose M, et al. Associations of TNFAIP3 variants with susceptibility to psoriasis vulgaris and psoriasis arthritis in a Japanese population. J Dermatol Sci. 2020;100:220–2. https://doi.org/10.1016/j.jdermsci.2020.09.005.

    Article  CAS  PubMed  Google Scholar 

  55. van den Reek J, et al. Polymorphisms in CD84, IL12B and TNFAIP3 are associated with response to biologics in patients with psoriasis. Br J Dermatol. 2017;176:1288–96. https://doi.org/10.1111/bjd.15005.

    Article  CAS  PubMed  Google Scholar 

  56. Sahlol NY, Mostafa MS, Madkour LAE, Salama DM. Low TNFAIP3 expression in psoriatic skin promotes disease susceptibility and severity. PLoS One. 2019;14:e0217352. https://doi.org/10.1371/journal.pone.0217352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tejasvi T, et al. TNFAIP3 gene polymorphisms are associated with response to TNF blockade in psoriasis. J Invest Dermatol. 2012;132:593–600. https://doi.org/10.1038/jid.2011.376.

    Article  CAS  PubMed  Google Scholar 

  58. Zhai Y, et al. TNFAIP3-DEPTOR complex regulates inflammasome secretion through autophagy in ankylosing spondylitis monocytes. Autophagy. 2018;14:1629–43. https://doi.org/10.1080/15548627.2018.1458804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matmati M, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet. 2011;43:908–12. https://doi.org/10.1038/ng.874.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang Q, et al. Novel gene therapy for rheumatoid arthritis with single local injection: adeno-associated virus-mediated delivery of A20/TNFAIP3. Mil Med Res. 2022;9:34. https://doi.org/10.1186/s40779-022-00393-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wolfrum S, Teupser D, Tan M, Chen KY, Breslow JL. The protective effect of A20 on atherosclerosis in apolipoprotein E-deficient mice is associated with reduced expression of NF-kappaB target genes. Proc Natl Acad Sci U S A 2007;104:18601-18606.https://doi.org/10.1073/pnas.0709011104.

  62. Longo CR, et al. A20 protects from CD40-CD40 ligand-mediated endothelial cell activation and apoptosis. Circulation. 2003;108:1113–8. https://doi.org/10.1161/01.Cir.0000083718.76889.D0.

    Article  CAS  PubMed  Google Scholar 

  63. Schuijs MJ, et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science. 2015;349:1106–10. https://doi.org/10.1126/science.aac6623.

    Article  CAS  PubMed  Google Scholar 

  64. Kang NI, et al. A20 attenuates allergic airway inflammation in mice. J Immunol. 2009;183:1488–95. https://doi.org/10.4049/jimmunol.0900163.

    Article  CAS  PubMed  Google Scholar 

  65. Krusche J, et al. TNF-alpha-induced protein 3 is a key player in childhood asthma development and environment-mediated protection. J Allergy Clin Immunol. 2019;144:1684-1696 e1612. https://doi.org/10.1016/j.jaci.2019.07.029.

    Article  CAS  PubMed  Google Scholar 

  66. Holgado A, et al. A20 is a master switch of IL-33 signaling in macrophages and determines IL-33-induced lung immunity. J Allergy Clin Immunol. 2023. https://doi.org/10.1016/j.jaci.2023.02.026.

    Article  PubMed  Google Scholar 

  67. Kato M, et al. Frequent inactivation of A20 in B-cell lymphomas. Nature. 2009;459:712–6. https://doi.org/10.1038/nature07969.

    Article  CAS  PubMed  Google Scholar 

  68. Schmitz R, et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med. 2009;206:981–9. https://doi.org/10.1084/jem.20090528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Roschewski M, Staudt LM, Wilson WH. Diffuse large B-cell lymphoma-treatment approaches in the molecular era. Nat Rev Clin Oncol. 2014;11:12–23. https://doi.org/10.1038/nrclinonc.2013.197.

    Article  CAS  PubMed  Google Scholar 

  70. Tatarczuch M, et al. Molecular associations of response to the new-generation BTK inhibitor zanubrutinib in marginal zone lymphoma. Blood Adv. 2023;7:3531–9. https://doi.org/10.1182/bloodadvances.2022009412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nocturne G, et al. Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjogren’s syndrome. Blood. 2013;122:4068–76. https://doi.org/10.1182/blood-2013-05-503383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tavares RM, et al. The ubiquitin modifying enzyme A20 restricts B cell survival and prevents autoimmunity. Immunity. 2010;33:181–91. https://doi.org/10.1016/j.immuni.2010.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Singh M, et al. Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody. Cell. 2020;180:878-894 e819. https://doi.org/10.1016/j.cell.2020.01.029.

    Article  CAS  PubMed  Google Scholar 

  74. Cheon H, et al. Genomic landscape of TCRalphabeta and TCRgammadelta T-large granular lymphocyte leukemia. Blood. 2022;139:3058–72. https://doi.org/10.1182/blood.2021013164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Olson TL, et al. Frequent somatic TET2 mutations in chronic NK-LGL leukemia with distinct patterns of cytopenias. Blood. 2021;138:662–73. https://doi.org/10.1182/blood.2020005831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi Y, et al. The dual roles of A20 in cancer. Cancer Lett. 2021;511:26–35. https://doi.org/10.1016/j.canlet.2021.04.017.

    Article  CAS  PubMed  Google Scholar 

  77. Aeschlimann FA, et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann Rheum Dis. 2018;77:728–35. https://doi.org/10.1136/annrheumdis-2017-212403.

    Article  CAS  PubMed  Google Scholar 

  78. Elhani I, et al. A20 haploinsufficiency: a systematic review of 177 cases. J Invest Dermatol. 2023. https://doi.org/10.1016/j.jid.2023.12.007.

    Article  PubMed  Google Scholar 

  79. Kadowaki S, et al. Functional analysis of novel A20 variants in patients with atypical inflammatory diseases. Arthritis Res Ther. 2021;23:52. https://doi.org/10.1186/s13075-021-02434-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kadowaki T, et al. Immunophenotyping of A20 haploinsufficiency by multicolor flow cytometry. Clin Immunol. 2020;216:108441. https://doi.org/10.1016/j.clim.2020.108441.

    Article  CAS  PubMed  Google Scholar 

  81. Yu MP, Xu XS, Zhou Q, Deuitch N, Lu MP. Haploinsufficiency of A20 (HA20): updates on the genetics, phenotype, pathogenesis and treatment. World J Pediatr. 2020;16:575–84. https://doi.org/10.1007/s12519-019-00288-6.

    Article  PubMed  Google Scholar 

  82. Burleigh A, et al. Genetic testing of Behcet’s disease using next-generation sequencing to identify monogenic mimics and HLA-B*51. Rheumatology (Oxford). 2023. https://doi.org/10.1093/rheumatology/kead628.

    Article  PubMed  Google Scholar 

  83. Aslani N, et al. TNFAIP3 mutation causing haploinsufficiency of A20 with a hemophagocytic lymphohistiocytosis phenotype: a report of two cases. Pediatr Rheumatol Online J. 2022;20:78. https://doi.org/10.1186/s12969-022-00735-1.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kadowaki T, Kadowaki S, Ohnishi H. A20 Haploinsufficiency in East Asia. Front Immunol. 2021;12:780689. https://doi.org/10.3389/fimmu.2021.780689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schwartz DM, et al. Type I interferon signature predicts response to JAK inhibition in haploinsufficiency of A20. Ann Rheum Dis. 2020;79:429–31. https://doi.org/10.1136/annrheumdis-2019-215918.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang C, et al. Novel loss-of-function mutations in TNFAIP3 gene in patients with lupus nephritis. Clin Kidney J. 2022;15:2027–38. https://doi.org/10.1093/ckj/sfac130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen Y, et al. Association of clinical phenotypes in haploinsufficiency A20 (HA20) with disrupted domains of A20. Front Immunol. 2020;11:574992. https://doi.org/10.3389/fimmu.2020.574992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Iwasa T, et al. A case of A20 haploinsufficiency complicated by autoimmune hepatitis. Hepatol Res. 2023. https://doi.org/10.1111/hepr.14003.

    Article  PubMed  Google Scholar 

  89. Pandurangi S, et al. Deleterious variants in TNFAIP3 are associated with type II and seronegative pediatric autoimmune hepatitis. J Hepatol. 2023. https://doi.org/10.1016/j.jhep.2023.09.028.

    Article  PubMed  Google Scholar 

  90. Harasimowicz M, Stone D, Carpio Tumba M, Romeo T, Karri U, Hoffmann P, et al. Liver disease is a common feature of HA20 that causes significant morbidity associated with interferon induction [abstract]. Arthritis Rheumatol. 2023;75(suppl 9). https://acrabstracts.org/abstract/liver-disease-is-a-common-feature-of-ha20-that-causes-significant-morbidity-associated-with-interferon-induction/. Accessed 2 Mar 2024.

  91. Christiansen M, et al. Identification of novel genetic variants in CVID patients with autoimmunity, autoinflammation, or malignancy. Front Immunol. 2019;10:3022. https://doi.org/10.3389/fimmu.2019.03022.

    Article  CAS  PubMed  Google Scholar 

  92. Takagi M, et al. Haploinsufficiency of TNFAIP3 (A20) by germline mutation is involved in autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2017;139:1914–22. https://doi.org/10.1016/j.jaci.2016.09.038.

    Article  CAS  PubMed  Google Scholar 

  93. Schwartz DM, et al. Systematic evaluation of nine monogenic autoinflammatory diseases reveals common and disease-specific correlations with allergy-associated features. Ann Rheum Dis. 2021;annrheumdis-2020–219137. https://doi.org/10.1136/annrheumdis-2020-219137.

  94. Amikishiyev S, et al. Differences in the clinical spectrum of haploinsufficiency of A20 (Ha20) cases diagnosed during adulthood. Ann Rheum Dis. 2022;81:1756.1751-1756. https://doi.org/10.1136/annrheumdis-2022-eular.3269.

    Article  Google Scholar 

  95. Rossi MN, et al. Identification of a novel mutation in TNFAIP3 in a family with poly-autoimmunity. Front Immunol. 2022;13:804401. https://doi.org/10.3389/fimmu.2022.804401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gruber CN, et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity. 2020;53:672-684 e611. https://doi.org/10.1016/j.immuni.2020.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Stewart OJ, Patel R, Gruber C, Bogunovic D. Resolving incomplete penetrance in primary immunodeficiencies. Clin Immunol. 2023;250. https://doi.org/10.1016/j.clim.2023.109357.

Download references

Acknowledgements

Figures were prepared with Biorender. The authors would like to thank Natalie Deuitsch for critical revisions to the work.

Funding

There was no research funded in this manuscript. HA20 research at the University of Pittsburgh is funded in part by the Jeffrey Modell Foundation and by the Samuel and Emma Winters Foundation.

Author information

Authors and Affiliations

Authors

Contributions

UK, MH wrote the main manuscript and prepared figures and tables. MCT generated figures and tables. DMS supervised, edited, and wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Daniella M. Schwartz.

Ethics declarations

Competing Interests

DMS is a consultant for Sobi Pharmaceuticals and receives research funding from Eli Lilly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karri, U., Harasimowicz, M., Carpio Tumba, M. et al. The Complexity of Being A20: From Biological Functions to Genetic Associations. J Clin Immunol 44, 76 (2024). https://doi.org/10.1007/s10875-024-01681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-024-01681-1

Keywords

Navigation