Skip to main content

Advertisement

Log in

Clinical and Osteopetrosis-Like Radiological Findings in Patients with Leukocyte Adhesion Deficiency Type III

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

Leukocyte and platelet integrin function defects are present in leukocyte adhesion deficiency type III (LAD-III) due to mutations in FERMT3. Additionally, osteoclast/osteoblast dysfunction develops in LAD-III.

Aim

To discuss the distinguishing clinical, radiological, and laboratory features of LAD-III.

Methods

This study included the clinical, radiological, and laboratory characteristics of twelve LAD-III patients.

Results

The male/female ratio was 8/4. The parental consanguinity ratio was 100%. Half of the patients had a family history of patients with similar findings. The median age at presentation and diagnosis was 18 (1–60) days and 6 (1–20) months, respectively. The median leukocyte count on admission was 43,150 (30,900–75,700)/μL. The absolute eosinophil count was tested in 8/12 patients, and eosinophilia was found in 6/8 (75%). All patients had a history of sepsis. Other severe infections were pneumonia (66.6%), omphalitis (25%), osteomyelitis (16.6%), gingivitis/periodontitis (16%), chorioretinitis (8.3%), otitis media (8.3%), diarrhea (8.3%), and palpebral conjunctiva infection (8.3%). Four patients (33.3%) received hematopoietic stem cell transplantation (HSCT) from HLA-matched-related donors, and one deceased after HSCT. At initial presentation, 4 (33.3%) patients were diagnosed with other hematologic disorders, three patients (P5, P7, and P8) with juvenile myelomonocytic leukemia (JMML), and one (P2) with myelodysplastic syndrome (MDS).

Conclusion

In LAD-III, leukocytosis, eosinophilia, and bone marrow findings may mimic pathologies such as JMML and MDS. In addition to non-purulent infection susceptibility, patients with LAD-III exhibit Glanzmann-type bleeding disorder. In LAD-III, absent integrin activation due to kindlin-3 deficiency disrupts osteoclast actin cytoskeleton organization. This results in defective bone resorption and osteopetrosis-like radiological changes. These are distinctive features compared to other LAD types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yaz I, Ozbek B, Bildik HN, Tan C, Oskay Halacli S, Soyak Aytekin E, et al. Clinical and laboratory findings in patients with leukocyte adhesion deficiency type I: a multicenter study in Turkey. Clin Exp Immunol. 2021;206(1):47–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76(2):301–14.

    CAS  PubMed  Google Scholar 

  3. Kuijpers TW, van Bruggen R, Kamerbeek N, Tool AT, Hicsonmez G, Gurgey A, et al. Natural history and early diagnosis of LAD-1/variant syndrome. Blood. 2007;109(8):3529–37.

    CAS  PubMed  Google Scholar 

  4. Hanna S, Etzioni A. Leukocyte adhesion deficiencies. Ann N Y Acad Sci. 2012;1250(1):50–5.

    CAS  PubMed  Google Scholar 

  5. Cagdas D, Yılmaz M, Kandemir N, Tezcan İ, Etzioni A, Sanal Ö. A novel mutation in leukocyte adhesion deficiency type II/CDGIIc. J Clin Immunol. 2014;34:1009–14.

    CAS  PubMed  Google Scholar 

  6. Roos D, van Leeuwen K, Madkaikar M, Kambli PM, Gupta M, Mathews V, et al. Hematologically important mutations: leukocyte adhesion deficiency (second update). Blood Cells Mol Dis. 2023;102726

  7. Fan Z, Ley K. Leukocyte arrest: biomechanics and molecular mechanisms of β2 integrin activation. Biorheology. 2015;52(5-6):353–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuijpers TW, Van Lier RA, Hamann D, de Boer M, Thung LY, Weening RS, et al. Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins. J Clin Invest. 1997;100(7):1725–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kambli PM, Bargir UA, Yadav RM, Gupta MR, Dalvi AD, Hule G, et al. Clinical and genetic spectrum of a large cohort of patients with leukocyte adhesion deficiency type 1 and 3: a multicentric study from India. Front Immunol. 2020;11:612703.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bakhtiar S, Salzmann-Manrique E, Blok H-J, Eikema D-J, Hazelaar S, Ayas M, et al. Allogeneic hematopoietic stem cell transplantation in leukocyte adhesion deficiency type I and III. Blood Adv. 2021;5(1):262–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Robert P, Canault M, Farnarier C, Nurden A, Grosdidier C, Barlogis V, et al. A novel leukocyte adhesion deficiency III variant: kindlin-3 deficiency results in integrin- and nonintegrin-related defects in different steps of leukocyte adhesion. J Immunol. 2011;186(9):5273–83.

    CAS  PubMed  Google Scholar 

  12. Goldstein B. International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8.

    PubMed  Google Scholar 

  13. Kuijpers TW, van de Vijver E, Weterman MA, de Boer M, Tool AT, van den Berg TK, et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood. 2009;113(19):4740–6.

    CAS  PubMed  Google Scholar 

  14. Kilic SS, Etzioni A. The clinical spectrum of leukocyte adhesion deficiency (LAD) III due to defective CalDAG-GEF1. J Clin Immunol. 2009;29(1):117–22.

    CAS  PubMed  Google Scholar 

  15. Haskoloğlu ZŞ, Bal SK, Islamoğlu C, AKB B, Beşli D, Aytekin C, et al. Evaluation of clinical, immunological characteristics, treatment and follow-up of 14 patients with the diagnosis of leukocyte adhesion defect (type-I and type-III). Türkiye Çocuk Hast Derg/Turkish J Pediatr Dis. 2020;14:286–94.

    Google Scholar 

  16. Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O, Ma YQ, et al. A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med. 2009;15(3):313–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sabnis H, Kirpalani A, Horan J, McDowall A, Svensson L, Cooley A, et al. Leukocyte adhesion deficiency-III in an African-American patient. Pediatr Blood Cancer. 2010;55(1):180–2.

    PubMed  Google Scholar 

  18. Elhasid R, Kilic SS, Ben-Arush M, Etzioni A, Rowe JM. Prompt recovery of recipient hematopoiesis after two consecutive haploidentical peripheral blood SCTs in a child with leukocyte adhesion defect III syndrome. Bone Marrow Transplant. 2010;45(2):413–4.

    CAS  PubMed  Google Scholar 

  19. Crazzolara R, Maurer K, Schulze H, Zieger B, Zustin J, Schulz AS. A new mutation in the KINDLIN-3 gene ablates integrin-dependent leukocyte, platelet, and osteoclast function in a patient with leukocyte adhesion deficiency-III. Pediatr Blood Cancer. 2015;62(9):1677–9.

    CAS  PubMed  Google Scholar 

  20. Palagano E, Slatter MA, Uva P, Menale C, Villa A, Abinun M, et al. Hematopoietic stem cell transplantation corrects osteopetrosis in a child carrying a novel homozygous mutation in the FERMT3 gene. Bone. 2017;97:126–9.

    CAS  PubMed  Google Scholar 

  21. Meller J, Malinin NL, Panigrahi S, Kerr BA, Patil A, Ma Y, et al. Novel aspects of Kindlin-3 function in humans based on a new case of leukocyte adhesion deficiency III. J Thromb Haemost. 2012;10(7):1397–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Alon R, Aker M, Feigelson S, Sokolovsky-Eisenberg M, Staunton DE, Cinamon G, et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood. 2003;101(11):4437–45.

    CAS  PubMed  Google Scholar 

  23. Mory A, Feigelson SW, Yarali N, Kilic SS, Bayhan GI, Gershoni-Baruch R, et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood. 2008;112(6):2591.

    CAS  PubMed  Google Scholar 

  24. McDowall A, Svensson L, Stanley P, Patzak I, Chakravarty P, Howarth K, et al. Two mutations in the KINDLIN3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro. Blood. 2010;115(23):4834–42.

    CAS  PubMed  Google Scholar 

  25. Jurk K, Schulz AS, Kehrel BE, Rapple D, Schulze H, Mobest D, et al. Novel integrin-dependent platelet malfunction in siblings with leukocyte adhesion deficiency-III (LAD-III) caused by a point mutation in FERMT3. Thromb Haemost. 2010;103(5):1053–64.

    CAS  PubMed  Google Scholar 

  26. Harris ES, Smith TL, Springett GM, Weyrich AS, Zimmerman GA. Leukocyte adhesion deficiency-I variant syndrome (LAD-Iv, LAD-III): molecular characterization of the defect in an index family. Am J Hematol. 2012;87(3):311.

    CAS  PubMed  Google Scholar 

  27. Shahid S, Zaidi S, Ahmed S, Siddiqui S, Abid A, Malik S, et al. A novel nonsense mutation in FERMT3 causes LAD-III in a Pakistani family. Front Genet. 2019;10:360.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Essa MF, Elbashir E, Alroqi F, Mohammed R, Alsultan A. Successful hematopoietic stem cell transplant in leukocyte adhesion deficiency type III presenting primarily as malignant infantile osteopetrosis. Clin Immunol. 2020;213:108365.

    CAS  PubMed  Google Scholar 

  29. Harris ES, Shigeoka AO, Li W, Adams RH, Prescott SM, McIntyre TM, et al. A novel syndrome of variant leukocyte adhesion deficiency involving defects in adhesion mediated by beta1 and beta2 integrins. Blood. 2001;97(3):767–76.

    CAS  PubMed  Google Scholar 

  30. Stepensky PY, Wolach B, Gavrieli R, Rousso S, Ben Ami T, Goldman V, et al. Leukocyte adhesion deficiency type III: clinical features and treatment with stem cell transplantation. J Pediatr Hematol Oncol. 2015;37(4):264–8.

    CAS  PubMed  Google Scholar 

  31. Suratannon N, Yeetong P, Srichomthong C, Amarinthnukrowh P, Chatchatee P, Sosothikul D, et al. Adaptive immune defects in a patient with leukocyte adhesion deficiency type III with a novel mutation in FERMT3. Pediatr Allergy Immunol. 2016;27(2):214–7.

    PubMed  Google Scholar 

  32. Qureshi S, Mir F, Junejo S, Saleem K, Zaidi S, Naveed AB, et al. The spectrum of primary immunodeficiencies at a tertiary care hospital in Pakistan. World Allergy Organ J. 2020;13(7):100133.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yahya AM, AlMulla AA, AlRufaye HJ, Al Dhaheri A, Elomami AS, Al-Hammadi S, et al. Case report: a case of leukocyte adhesion deficiency, type III presenting with impaired platelet function, lymphocytosis and granulocytosis. Front Pediatr. 2021;9:713921.

    PubMed  PubMed Central  Google Scholar 

  34. Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, et al. Kindlin-3–mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol. 2011;192(5):883–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wolach B, Gavrieli R, Wolach O, Stauber T, Abuzaitoun O, Kuperman A, et al. Leucocyte adhesion deficiency-A multicentre national experience. Eur J Clin Invest. 2019;49(2):e13047.

    PubMed  Google Scholar 

  36. Kinashi T, Aker M, Sokolovsky-Eisenberg M, Grabovsky V, Tanaka C, Shamri R, et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood. 2004;103(3):1033–6.

    CAS  PubMed  Google Scholar 

  37. Pasvolsky R, Feigelson SW, Kilic SS, Simon AJ, Tal-Lapidot G, Grabovsky V, et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J Exp Med. 2007;204(7):1571–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Slatkin M. Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet. 2008;9(6):477–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. GnomAD 2022 [Available from: https://gnomad.broadinstitute.org/variant/11-64496517-G-T?dataset=gnomad_r2_1. .

  40. Born G, Grayton HM, Langhorst H, Dudanova I, Rohlmann A, Woodward BW, et al. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors. Front Synaptic Neurosci. 2015;7:3.

    PubMed  PubMed Central  Google Scholar 

  41. Ganesh A, Al-Zuhaibi SS, Bialasiewicz A, Ahmed S, Al-Tamemi S, E-Nour IB. Necrotizing Pseudomonas infection of the ocular adnexa in an infant with leukocyte adhesion defect. J Pediatr Ophthalmol Strabismus. 2007;44(4):199–200.

    PubMed  Google Scholar 

  42. Singh P, Chen C, Pal-Ghosh S, Stepp MA, Sheppard D, Van De Water L. Loss of integrin α9β1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J Invest Dermatol. 2009;129(1):217–28.

    CAS  PubMed  Google Scholar 

  43. Lee T-H, Seng S, Li H, Kennel SJ, Avraham HK, Avraham S. Integrin regulation by vascular endothelial growth factor in human brain microvascular endothelial cells: role of α6β1 integrin in angiogenesis. J Biol Chem. 2006;281(52):40450–60.

    CAS  PubMed  Google Scholar 

  44. Majorana A, Notarangelo LD, Savoldi E, Gastaldi G, Lozada-Nur F. Leukocyte adhesion deficiency in a child with severe oral involvement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87(6):691–4.

    CAS  PubMed  Google Scholar 

  45. Koivisto L, Heino J, Hakkinen L, Larjava H. Integrins in wound healing. Adv Wound Care. 2014;3(12):762–83.

    Google Scholar 

  46. Karow A, Baumann I, Niemeyer CM. Morphologic differential diagnosis of juvenile myelomonocytic leukemia—pitfalls apart from viral infection. J Pediatr Hematol Oncol. 2009;31(5):380.

    PubMed  Google Scholar 

  47. Strauss A, Furlan I, Steinmann S, Buchholz B, Kremens B, Rossig C, et al. Unmistakable morphology? Infantile malignant osteopetrosis resembling juvenile myelomonocytic leukemia in infants. J Pediatr. 2015;167(2):486–8.

    PubMed  Google Scholar 

  48. Hacettepe University Institute of Population Studies, 2018 Turkey Demographic and Health Survey. https://hips.hacettepe.edu.tr/en/2018_tdhs_analysis_and_report-262. Accessed 11 March 2023

Download references

Funding

The authors received no financial support for the research.

Author information

Authors and Affiliations

Authors

Contributions

ABK, IY, and DC wrote the manuscript. SA, AM, SSK, and IT reviewed the clinical and laboratory findings of the patients. IY and RG reviewed the genetic and radiological findings of the patients, respectively.

Corresponding author

Correspondence to Deniz Cagdas.

Ethics declarations

Ethical Approval

The study design was in accordance with the Helsinki Declaration and was approved by the Hacettepe University Non-interventional Clinical Research Ethics Board (2021/12-56).

Consent to Participate

Informed consent was obtained from the patients and parents or legal guardians of the pediatric participants.

Consent for Publication

The participant has consented to the submission of the study to the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key messages

• Leukocyte adhesion deficiency (LAD) type III leads to severe infections, such as sepsis, pneumonia, osteomyelitis, chorioretinitis, and cellulitis.

• Patients exhibit osteopetrosis-like bone findings and Glanzmann-type bleeding disorder.

• Leukocytosis, eosinophilia, and bone marrow findings may mimic pathologies such as JMML and MDS.

Supplementary Information

ESM 1.

(DOCX 196 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahraman, A.B., Yaz, I., Gocmen, R. et al. Clinical and Osteopetrosis-Like Radiological Findings in Patients with Leukocyte Adhesion Deficiency Type III. J Clin Immunol 43, 1250–1258 (2023). https://doi.org/10.1007/s10875-023-01479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-023-01479-7

Keywords

Navigation