Skip to main content

Advertisement

Log in

Protein-losing Enteropathy as a Complication and/or Differential Diagnosis of Common Variable Immunodeficiency

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

A Correction to this article was published on 26 August 2022

This article has been updated

Abstract

As protein-losing enteropathy (PLE) can lead to hypogammaglobulinemia and lymphopenia, and since common variable immunodeficiency (CVID) is associated with digestive complications, we wondered if (1) PLE could occur during CVID and (2) specific features could help determine whether a patient with antibody deficiency has CVID, PLE, or both. Eligible patients were thus classified in 3 groups: CVID + PLE (n = 8), CVID-only (= 19), and PLE-only (n = 13). PLE was diagnosed using fecal clearance of α1-antitrypsin or 111In-labeled albumin. Immunoglobulin (Ig) A, G, and M, naive/memory B and T cell subsets were compared between each group. CVID + PLE patients had multiple causes of PLE: duodenal villous atrophy (5/8), nodular follicular hyperplasia (4/8), inflammatory bowel disease-like (4/8), portal hypertension (4/8), giardiasis (3/8), and pernicious anemia (1/8). Compared to the CVID-only group, CVID + PLE patients had similar serum Ig levels, B cell subset counts, but lower naive T cell proportion and IgG replacement efficiency index. Compared to the CVID-only group, PLE-only patients did not develop infections but had higher serum levels of IgG (p = 0.03), IgA (p < 0.0001), and switched memory B cells (p = 0.001); and decreased naive T cells (CD4+: p = 0.005; CD8+: p < 0.0001). Compared to the PLE-only group, CVID + PLE patients had higher infection rates (p = 0.0003), and lower serum Ig (especially IgA: p < 0.001) and switched memory B cells levels. In conclusion, PLE can occur during CVID and requires higher IgG replacement therapy dosage. PLE can also mimic CVID and is associated with milder immunological abnormalities, notably mildly decreased to normal serum IgA and switched memory B cell levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study, as well as statistical analyses codes, are available from the corresponding author on reasonable request.

Change history

  • 25 August 2022

    The original version of this paper was updated to present the correct corresponding author and the correct name of the first author

  • 26 August 2022

    A Correction to this paper has been published: https://doi.org/10.1007/s10875-022-01356-9

Abbreviations

CVID:

Common variable immunodeficiency

IBD:

Inflammatory bowel disease

Ig:

Immunoglobulin

IV:

Intravenous

MZ:

Marginal zone

NRH:

Nodular regenerative hyperplasia

NS:

Non-significant

PID:

Primary immunodeficiency

PIL:

Primary intestinal lymphangiectasia

PLE:

Protein-losing enteropathy

SC:

Subcutaneous

Sw Mem:

Switched memory

TCM:

Central memory T cells

TEM:

Effector memory T cells

TEMRA:

Terminal effector memory T cells

References

  1. Gathmann B, Mahlaoui N, Ceredih, Gérard L, Oksenhendler E, Warnatz K, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116–26.

    Article  PubMed  Google Scholar 

  2. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. ESID Registry Working Party. ESID Registry - working definitions for clinical diagnosis of PID [Internet]. European Society for Immunodeficiencies. [cited 2020 Jul 12]. Available from: https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria

  4. Levitt DG, Levitt MD. Protein losing enteropathy: comprehensive review of the mechanistic association with clinical and subclinical disease states. Clin Exp Gastroenterol. 2017;10:147–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pikkarainen S, Martelius T, Ristimäki A, Siitonen S, Seppänen MRJ, Färkkilä M. A high prevalence of gastrointestinal manifestations in common variable immunodeficiency. Am J Gastroenterol. 2019;114:648–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Daniels JA, Lederman HM, Maitra A, Montgomery EA. Gastrointestinal tract pathology in patients with common variable immunodeficiency (CVID): a clinicopathologic study and review. Am J Surg Pathol. 2007;31:1800–12.

    Article  PubMed  Google Scholar 

  7. Milito C, Cinetto F, Megna V, Spadaro G, Quinti I, Liberatore M. The usefulness of scintigraphic studies in the assessment of asymptomatic bowel disease in patients with primary antibody diseases. J Clin Med Multidis Digital Publ Ins. 2020;9:949.

    CAS  Google Scholar 

  8. Lan J, Eshun J, Lieberman JA. Identical twins with XLA requiring differing amounts of 20% subcutaneous immunoglobulin secondary to protein-losing enteropathy. The Journal of Allergy and Clinical Immunology. In Practice. 2018;6:1073–4.

    PubMed  Google Scholar 

  9. Shah SN, Todoric K, Tarrant TK. Improved outcomes on subcutaneous IgG in patients with humoral immunodeficiency and co-morbid bowel disease. Clin Case Rep Rev. 2015;1:151–2.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sanges M, Spadaro G, Miniero M, Mattera D, Sollazzo R, D’Armiento FP, et al. Efficacy of subcutaneous immunoglobulins in primary immunodeficiency with Crohn’s-like phenotype: report of a case. Eur Rev Med Pharmacol Sci. 2015;19:2641–5.

    CAS  PubMed  Google Scholar 

  11. Augustin J, Hoyeau N, Sokol H, Fléjou J-F. Svrcek M [A colourful villous atrophy]. Ann Pathol. 2013;33:418–20.

    Article  PubMed  Google Scholar 

  12. Furtado AK, Cabral VLR, Santos TN, Mansour E, Nagasako CK, Lorena SL, et al. Giardia infection: protein-losing enteropathy in an adult with immunodeficiency. World J Gastroenterol. 2012;18:2430–3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. van de Ven AAJM, Douma JW, Rademaker C, van Loon AM, Wensing AMJ, Boelens J-J, et al. Pleconaril-resistant chronic parechovirus-associated enteropathy in agammaglobulinaemia. Antivir Ther (Lond). 2011;16:611–4.

    Article  Google Scholar 

  14. Kuroe K, Sawada Y, Fukushi M, Saito H, Funakoshi O, Haga Y, et al. A case of protein-losing enteropathy in idiopathic thrombocytopenic purpura with decreased IgA. J Gastroenterol. 1994;29:349–56.

    Article  CAS  PubMed  Google Scholar 

  15. Waldmann TA, Schwab PJ. IgG (7 S Gamma globulin) metabolism in hypogammaglobulinemia: studies in patients with defective gamma globulin synthesis, gastrointestinal protein loss, or both*. J Clin Invest. 1965;44:1523–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Malphettes M, Gérard L, Carmagnat M, Mouillot G, Vince N, Boutboul D, et al. Late-onset combined immune deficiency: a subset of common variable immunodeficiency with severe T cell defect. Clin Infect Dis. 2009;49:1329–38.

    Article  CAS  PubMed  Google Scholar 

  17. Mouillot G, Carmagnat M, Gérard L, Garnier J-L, Fieschi C, Vince N, et al. B-cell and T-cell phenotypes in CVID patients correlate with the clinical phenotype of the disease. J Clin Immunol. 2010;30:746–55.

    Article  PubMed  Google Scholar 

  18. Florent C, L’Hirondel C, Desmazures C, Aymes C, Bernier JJ. Intestinal clearance of alpha 1-antitrypsin. A sensitive method for the detection of protein-losing enteropathy. Gastroenterology. 1981;81:777–80.

    Article  CAS  PubMed  Google Scholar 

  19. Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop WC, Groeneveld K, et al. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J Pediatr. 1997;130:388–93.

    Article  CAS  PubMed  Google Scholar 

  20. Warnatz K, Schlesier M. Flowcytometric phenotyping of common variable immunodeficiency. Cytometry B Clin Cytom. 2008;74B:261–71.

    Article  Google Scholar 

  21. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint J-P, Labalette M. Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4+ versus effector memory and terminally differentiated memory cells in CD8+ compartment. Mech Ageing Dev. 2006;127:274–81.

    Article  CAS  PubMed  Google Scholar 

  22. Gouilleux-Gruart V, Chapel H, Chevret S, Lucas M, Malphettes M, Fieschi C, et al. Efficiency of immunoglobulin G replacement therapy in common variable immunodeficiency: correlations with clinical phenotype and polymorphism of the neonatal Fc receptor: IgG efficiency and FcRn in CVID. Clin Exp Immunol. 2013;171:186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Uzzan M, Ko HM, Mehandru S, Cunningham-Rundles C. Gastrointestinal disorders associated with common variable immune deficiency (CVID) and Chronic granulomatous disease (CGD). Curr Gastroenterol Rep. 2016;18:17.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Magdo HS, Stillwell TL, Greenhawt MJ, Stringer KA, Yu S, Fifer CG, et al. Immune abnormalities in Fontan protein-losing enteropathy: a case-control study. J Pediatr Elsevier. 2015;167:331–7.

    Article  Google Scholar 

  25. Cheung YF, Tsang HYH, Kwok JSY. Immunologic profile of patients with protein-losing enteropathy complicating congenital heart disease. Pediatr Cardiol. 2002;23:587–93.

    Article  CAS  PubMed  Google Scholar 

  26. Strober W, Wochner RD, Carbone PP, Waldmann TA. Intestinal lymphangiectasia: a protein-losing enteropathy with hypogammaglobulinemia, lymphocytopenia and impaired homograft rejection*. J Clin Invest. 1967;46:1643–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ye Z, Huang Y, Wang Y, Lu J, Wu J, Yu Z. Phenotype and genotype of a cohort of Chinese children with early-onset protein-losing enteropathy. J Pediatr Elsevier. 2019;208:38-42.e3.

    Article  CAS  Google Scholar 

  28. Fuss IJ, Strober W, Cuccherini BA, Pearlstein GR, Brown M, Fleisher TA, et al. Intestinal lymphangiectasia, a disease characterized by selective loss of naive CD45RA+ lymphocytes into the gastrointestinal tract. Eur J Immunol. 1998;11.

  29. Imataki O, Uchida S, Yokokura S, Uemura M, Kadowaki N. Anemia and hypogammaglobulinemia caused by Ménétrier’s disease. Int J Hematol. 2018;107:3–4.

    Article  PubMed  Google Scholar 

  30. Peters B, Schuurs-Hoeijmakers JHM, Fuijkschot J, Reimer A, van der Flier M, Lugtenberg D, et al. Protein-losing enteropathy in camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome. Pediatr Rheumatol Online J. 2016;14:32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abul MH, Tuano K, Healy CM, Vece TJ, Quintanilla NM, Davis CM, et al. A 15-year-old boy with severe combined immunodeficiency, fungal infection, and weight gain. Allergy Asthma Proc. 2015;36:407–11.

    Article  CAS  PubMed  Google Scholar 

  32. Konjeti VR, Paluri S. Disseminated mycobacterium avium complex as protein-losing enteropathy in a non-HIV patient. Conn Med. 2014;78:335–7.

    PubMed  Google Scholar 

  33. Boccardo F, Bellini C, Girino M, Campisi C, Vidali F, Corazza GR, et al. Diagnostic assessment and therapeutic approach for immunodeficiency due to chylous dysplasia: a case report. Microsurgery. 2010;NA-NA.

  34. Iwasa T, Matsubayashi N. Protein-loosing enteropathy associated with rotavirus infection in an infant. World J Gastroenterol. 2008;14:1630–2.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Knight AK, Mayer L, Franks AG, Cunningham-Rundles C. Hypogammaglobulinemia with facial edema. PLoS Med [Internet]. 2006 [cited 2020 Apr 17];3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1762068/

  36. Martínez-García F, Mayordomo-Aranda E, Flor-Lorente B, García-Fuster MJ. Hypogammaglobulinemia secundary to actinic enteritis. Med Clin (Barc). 2006;127:518.

    Article  Google Scholar 

  37. Thatayatikom A, White AJ. Swollen uvula in an 18-year-old man with hypogammaglobulinemia. Ann Allergy Asthma Immunol. 2004;93:417–24.

    Article  PubMed  Google Scholar 

  38. Ohsawa M, Nakamura M, Pan L, Shizuka T, Nakagawa J, Ishida H, et al. Post-operative constrictive pericarditis complicated with lymphocytopenia and hypoglobulinemia. Intern Med. 2004;43:811–5.

    Article  PubMed  Google Scholar 

  39. Chakrabarti S, Keeton BR, Salmon AP, Vettukattil JJ. Acquired combined immunodeficiency associated with protein losing enteropathy complicating Fontan operation. Heart. 2003;89:1130–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garty BZ. Deficiency of CD4+ lymphocytes due to intestinal loss after Fontan procedure. Eur J Pediatr. 2001;160:58–9.

    Article  CAS  PubMed  Google Scholar 

  41. Koch A, Hofbeck M, Feistel H, Buheitel G, Singer H. Circumscribed intestinal protein loss with deficiency in CD4+ lymphocytes after the Fontan procedure. Eur J Pediatr. 1999;158:847–50.

    Article  CAS  PubMed  Google Scholar 

  42. Heresbach D, Raoul JL, Genetet N, Noret P, Siproudhis L, Ramée MP, et al. Immunological study in primary intestinal lymphangiectasia. Digestion. 1994;55:59–64.

    Article  CAS  PubMed  Google Scholar 

  43. Müller C, Wolf H, Göttlicher J, Zielinski CC, Eibl MM. Cellular immunodeficiency in protein-losing enteropathy. Predominant reduction of CD3+ and CD4+ lymphocytes. Dig Dis Sci. 1991;36:116–22.

    Article  PubMed  Google Scholar 

  44. Perrick D, Guill MF, Clark J. Chronic abdominal pain, lymphopenia, and hypogammaglobulinemia in a 9-year-old female. Ann Allergy. 1989;62(287–8):326–8.

    Google Scholar 

  45. Yamamoto H, Tsutsui T, Mayumi M, Kasakura S. Immunodeficiency associated with selective loss of helper/inducer T cells and hypogammaglobulinaemia in a child with intestinal lymphangiectasia. Clin Exp Immunol. 1989;75:196–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. De Giacomo C, Maggiore G, Scotta MS, Ugazio AG. Administration of intravenous immunoglobulin in two children with hypogammaglobulinaemia due to protein losing enteropathy. Clin Exp Immunol. 1985;60:447–8.

    PubMed  PubMed Central  Google Scholar 

  47. Quak SH, Wee A, Yap HK, Tay JS, Quah TC, Yip WC. Intestinal lymphangiectasia–a report in two Chinese children. Aust Paediatr J. 1984;20:151–3.

    CAS  PubMed  Google Scholar 

  48. Nelson DL, Blaese RM, Strober W, Bruce R, Waldmann TA. Constrictive pericarditis, intestinal lymphangiectasia, and reversible immunologic deficiency. J Pediatr. 1975;86:548–54.

    Article  CAS  PubMed  Google Scholar 

  49. Mcguigan JE. Studies of the immunologic defects associated with intestinal lymphangiectasia: with some observations on dietary control of chylous ascites. Ann Intern Med. 1968;68:398.

    Article  CAS  PubMed  Google Scholar 

  50. Vignes S, Carcelain G. Increased surface receptor Fas (CD95) levels on CD4+ lymphocytes in patients with primary intestinal lymphangiectasia. Scand J Gastroenterol. 2009;44:252–6.

    Article  CAS  PubMed  Google Scholar 

  51. Farstad I, Norstein J, Brandtzaeg P. Phenotypes of B and T cells in human intestinal and mesenteric lymph. Gastroenterology. 1997;112:163–73.

    Article  CAS  PubMed  Google Scholar 

  52. Vaerman JP, Heremans JF. Origin and molecular size of immunoglobulin-A in the mesenteric lymph of the dog. Immunology. 1970;18:27–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Riches PG, Hobbs JR. Mechanisms in secondary hypogammaglobulinaemia. J Clin Pathol Suppl (R Coll Pathol). 1979;13:15–22.

    Article  CAS  Google Scholar 

  54. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog. Allergy. 1969;13:1–110.

    CAS  Google Scholar 

  55. Takeda H, Ishihama K, Fukui T, Fujishima S, Orii T, Nakazawa Y, et al. Significance of rapid turnover proteins in protein-losing gastroenteropathy. Hepatogastroenterology. 2003;50:1963–5.

    CAS  PubMed  Google Scholar 

  56. Rolfes MC, Sriaroon P, Dávila Saldaña BJ, Dvorak CC, Chapdelaine H, Ferdman RM, et al. Chronic norovirus infection in primary immune deficiency disorders: an international case series. Diagn Microbiol Infect Dis. 2019;93:69–73.

    Article  CAS  PubMed  Google Scholar 

  57. Tegtmeyer D, Seidl M, Gerner P, Baumann U, Klemann C. Inflammatory bowel disease caused by primary immunodeficiencies-clinical presentations, review of literature, and proposal of a rational diagnostic algorithm. Pediatr Allergy Immunol. 2017;28:412–29.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Each individual named as an author meets the ICMJE criteria for authorship. SS, NG, and GL conceived and designed the study. SS and NG screened patients and collected clinical and biological data. DH performed 111In-labeled albumin fecal clearance. SS and NG constituted and managed the database. SS and NG performed statistical analyses and created the figures. SS wrote the first draft of the manuscript. GL made major revisions to the manuscript. SV and DS provided their expertise in protein-losing enteropathies. SSa and NE provided their expertise in infectious diseases. LT, DL and EH provided their expertise in clinical immunology and immunodeficiencies. SD and ML provided their expertise in basic immunology. All authors read and approved the submitted version.

Corresponding author

Correspondence to Guillaume Lefèvre.

Ethics declarations

Conflict of Interest

SS reports travel/accommodation expenses from Shire. DL reports grants and personal fees from Octapharma and CSL Behring; grants from Grifols. GL received advisory fees from Shire and Takeda, travel/accommodation expenses from Octapharma, and research grants from LFB, Takeda, Octapharma, CSL Behring. NG, SV, DS, SaS, NE, LT, DH, EH, SD, ML report no conflict of interest related to this work.

Ethics Approval

The study complied with the recommendations of the Helsinki declaration. French legislation on non-interventional studies does not require ethics committee approval for the use of de-identified data collected during patient care. As such, the need for an ethics committee approval was waived for this study by the “Comité de Protection des Personnes” (CPP). The data were de-identified and complied with the requirements of the “Commission Nationale de l’Informatique et des Libertés” (CNIL), the organization responsible for ensuring the ethical use of data collected for scientific purposes in France. The CNIL approved the methods used to collect and analyze data from our patient database (approval #DEC20-229).

Consent to Participate and to Publish

French legislation on noninterventional studies requires collecting the non-opposition of patients but does not require written consent. As such, non-opposition was obtained from each patient included in the study for the use and publication of their de-identified medical record data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanges, S., Germain, N., Vignes, S. et al. Protein-losing Enteropathy as a Complication and/or Differential Diagnosis of Common Variable Immunodeficiency. J Clin Immunol 42, 1461–1472 (2022). https://doi.org/10.1007/s10875-022-01299-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-022-01299-1

Keywords

Navigation