Skip to main content

Advertisement

Log in

CARD9 Expression Pattern, Gene Dosage, and Immunodeficiency Phenotype Revisited

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

CARD9 deficiency is an autosomal recessive primary immunodeficiency underlying increased susceptibility to fungal infection primarily presenting as invasive CNS Candida and/or cutaneous/invasive dermatophyte infections. More recently, a rare heterozygous dominant negative CARD9 variant c.1434 + 1G > C was reported to be protective from inflammatory bowel disease.

Objective

We studied two siblings carrying homozygous CARD9 variants (c.1434 + 1G > C) and born to heterozygous asymptomatic parents. One sibling was asymptomatic and the other presented with candida esophagitis, upper respiratory infections, hypogammaglobulinemia, and low class-switched memory B cells.

Methods and Results

The CARD9 c.1434 + 1G > C variant generated two mutant transcripts confirmed by mRNA and protein expression: an out-of-frame c.1358–1434 deletion/ ~ 55 kDa protein (CARD9Δex.11) and an in-frame c.1417–1434 deletion/ ~ 61 kDa protein (CARD9Δ18 nt.). Neither transcript was able to form a complete/functional CBM complex, which includes TRIM62. Based on the index patient’s CVID-like phenotype, CARD9 expression was tested and detected in lymphocytes and monocytes from humans and mice. The functional impact of different CARD9 mutations and gene dosage conditions was evaluated in heterozygous and homozygous c.1434 + 1 G > C members of the index family, and in WT (two WT alleles), haploinsufficiency (one WT, one null allele), and null (two null alleles) individuals. CARD9 gene dosage impacted lymphocyte and monocyte functions including cytokine generation, MAPK activation, T-helper commitment, transcription, plasmablast differentiation, and immunoglobulin production in a differential manner.

Conclusions

CARD9 exon 11 integrity is critical to CBM complex function. CARD9 is expressed and affects particular T and B cell functions in a gene dosage-dependent manner, which in turn may contribute to the phenotype of CARD9 deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BAL:

Bronchoalveolar lavage

BCL10:

B cell lymphoma 10

CARD9:

Caspase recruitment domain-containing protein 9

CBM:

CARD9/BCL10/MALT1

CM:

Central memory

CNS:

Central nervous system

CVID:

Common variable immunodeficiency

GWAS:

Genome-wide association studies

HKC:

Heat-killed Candida

MALT1:

Mucosal-associated lymphoid tissue lymphoma translocation protein 1

IBD:

Inflammatory bowel disease

NCs:

Normal controls

nt:

Nucleotides

PBMCs:

Peripheral blood mononuclear cells

PHA:

Phytohemagglutinin

RNASeq:

RNA sequencing assay

TRIM62:

Tripartite motif containing-62

WBC:

White blood cells

WES:

Whole exome sequencing

WT:

Wild type

References

  1. Bertin J, Guo Y, Wang L, Srinivasula SM, Jacobson MD, Poyet J-L, et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-κB. J Biol Chem. 2000;275(52):41082–6.

    Article  CAS  Google Scholar 

  2. Hsu Y-MS, Zhang Y, You Y, Wang D, Li H, Duramad O, et al. The adaptor protein CARD9 is required for innate immune responses to intracellular pathogens. Nat Immunol. 2007;8(2):198–205.

    Article  CAS  Google Scholar 

  3. Roth S, Ruland J. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 2013;34(6):243–50.

    Article  CAS  Google Scholar 

  4. Hara H, Ishihara C, Takeuchi A, Imanishi T, Xue L, Morris SW, et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol. 2007;8(6):619–29.

    Article  CAS  Google Scholar 

  5. Hara H, Saito T. CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol. 2009;30(5):234–42.

    Article  CAS  Google Scholar 

  6. Zhong X, Chen B, Yang L, Yang Z. Molecular and physiological roles of the adaptor protein CARD9 in immunity. Cell Death Dis. 2018;9(2):1–11.

    Article  Google Scholar 

  7. Gavino C, Hamel N, Zeng JB, Legault C, Guiot M-C, Chankowsky J, et al. Impaired RASGRF1/ERK–mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2016;137(4):1178-88.e7.

    Article  CAS  Google Scholar 

  8. Jia X-M, Tang B, Zhu L-L, Liu Y-H, Zhao X-Q, Gorjestani S, et al. CARD9 mediates Dectin-1–induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211(11):2307–21.

    Article  Google Scholar 

  9. Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM, Schaefer BC, et al. CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat Immunol. 2019;20(5):559–70.

    Article  CAS  Google Scholar 

  10. Glocker E-O, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35.

    Article  CAS  Google Scholar 

  11. Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369(18):1704–14.

    Article  CAS  Google Scholar 

  12. Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11(12):e1005293. 

  13. Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6:39.

    Article  Google Scholar 

  14. Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive Exophiala infection. J Infect Dis. 2015;211(8):1241–50.

    Article  CAS  Google Scholar 

  15. Lanternier F, Mahdaviani SA, Barbati E, Chaussade H, Koumar Y, Levy R, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species–induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015;135(6):1558-68.e2.

    Article  CAS  Google Scholar 

  16. Gavino C, Cotter A, Lichtenstein D, Lejtenyi D, Fortin C, Legault C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59(1):81–4.

    Article  CAS  Google Scholar 

  17. Grumach AS, de Queiroz-Telles F, Migaud M, Lanternier F, Rosario Filho N, Palma SM, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35(5):486–90.

    Article  CAS  Google Scholar 

  18. Drewniak A, Gazendam RP, Tool AT, van Houdt M, Jansen MH, van Hamme JL, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385–92.

    Article  CAS  Google Scholar 

  19. Arango-Franco CA, Moncada-Vélez M, Beltrán CP, Berrío I, Mogollón C, Restrepo A, et al. Early-onset invasive infection due to Corynespora cassiicola associated with compound heterozygous CARD9 mutations in a Colombian patient. J Clin Immunol. 2018;38(7):794–803.

    Article  CAS  Google Scholar 

  20. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851.

    Article  CAS  Google Scholar 

  21. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118.

    Article  CAS  Google Scholar 

  22. McGovern DP, Gardet A, Törkvist L, Goyette P, Essers J, Taylor KD, et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat Genet. 2010;42(4):332.

    Article  CAS  Google Scholar 

  23. Burghardt KM, Avinashi V, Kosar C, Xu W, Wales PW, Avitzur Y, et al. A CARD9 polymorphism is associated with decreased likelihood of persistent conjugated hyperbilirubinemia in intestinal failure. PLoS One. 2014;9(1):e85915. https://doi.org/10.1371/journal.pone.0085915.

  24. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y, Zhang CK, et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat Genet. 2011;43(11):1066.

    Article  CAS  Google Scholar 

  25. Cao Z, Conway KL, Heath RJ, Rush JS, Leshchiner ES, Ramirez-Ortiz ZG, et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity. 2015;43(4):715–26.

    Article  CAS  Google Scholar 

  26. Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA, Stevens C, et al. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet. 2013;9(9):e1003723. https://doi.org/10.1371/journal.pgen.1003723.

  27. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.

    Article  CAS  Google Scholar 

  28. Hanel KH, Pfaff CM, Cornelissen C, Amann PM, Marquardt Y, Czaja K, et al. Control of the physical and antimicrobial skin barrier by an IL-31-IL-1 Signaling Network. J Immunol. 2016;196(8):3233–44.

    Article  Google Scholar 

  29. Corvilain E, Casanova J-L, Puel A. Inherited CARD9 deficiency: invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol. 2018;38(6):656–93.

    Article  CAS  Google Scholar 

  30. Puel A. Human inborn errors of immunity underlying superficial or invasive candidiasis. Hum Genet. 2020;139:1011–22.

  31. Szymanski EP, Leung JM, Fowler CJ, Haney C, Hsu AP, Chen F, et al. Pulmonary nontuberculous mycobacterial infection. A multisystem, multigenic disease. Am J Respir Crit Care Med. 2015;192(5):618–28.

    Article  CAS  Google Scholar 

  32. Chiriaco M, Di Matteo G, Conti F, Petricone D, De Luca M, Di Cesare S, et al. First Case of Patient With Two Homozygous Mutations in MYD88 and CARD9 Genes Presenting With Pyogenic Bacterial Infections, Elevated IgE, and Persistent EBV Viremia. Front Immunol. 2019;10:130.

    Article  CAS  Google Scholar 

  33. de Diego RP, Sánchez-Ramón S, López-Collazo E, Martínez-Barricarte R, Cubillos-Zapata C, Cerdán AF, et al. Genetic errors of the human caspase recruitment domain–B-cell lymphoma 10–mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity. J Allergy Clin Immunol. 2015;136(5):1139–49.

    Article  Google Scholar 

  34. Ishizuka S, Yokoyama R, Sato K, Shiroma R, Nakahira A, Yamamoto H, et al. Effect of CARD9 deficiency on neutrophil-mediated host defense against pulmonary infection with Streptococcus pneumoniae. Infect Immun. 2020;89:e00305-20. https://doi.org/10.1128/IAI.00305-20.

  35. Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, et al. Loss of B Cells in Patients with Heterozygous Mutations in IKAROS. N Engl J Med. 2016;374(11):1032–43.

    Article  CAS  Google Scholar 

  36. Saffran DC, Parolini O, Fitch-Hilgenberg ME, Rawlings DJ, Afar DE, Witte ON, et al. Brief report: a point mutation in the SH2 domain of Bruton’s tyrosine kinase in atypical X-linked agammaglobulinemia. N Engl J Med. 1994;330(21):1488–91.

    Article  CAS  Google Scholar 

  37. Uematsu T, Iizasa E, Kobayashi N, Yoshida H, Hara H. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity. Sci Rep. 2015;5:17577.

    Article  CAS  Google Scholar 

  38. Doron I, Leonardi I, Li XV, Fiers WD, Semon A, Bialt-DeCelie M, et al. Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies. Cell. 2021;184(4):1017-31e14.

    Article  CAS  Google Scholar 

  39. Rice AM, McLysaght A. Dosage-sensitive genes in evolution and disease. BMC Biol. 2017;15(1):1–10.

    Article  Google Scholar 

  40. Veitia RA, Bottani S, Birchler JA. Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet. 2008;24(8):390–7.

    Article  CAS  Google Scholar 

  41. Fisher E, Scambler P. Human haploinsufficiency—one for sorrow, two for joy. Nat Genet. 1994;7(1):5.

    Article  CAS  Google Scholar 

  42. De Bruyne M, Hoste L, Bogaert DJ, Van den Bossche L, Tavernier SJ, Parthoens E, et al. A CARD9 founder mutation disrupts NF-κB signaling by inhibiting BCL10 and MALT1 recruitment and signalosome formation. Front Immunol. 2018;9:2366.

    Article  Google Scholar 

  43. Schatorje EJ, Gemen EF, Driessen GJ, Leuvenink J, van Hout RW, de Vries E. Paediatric reference values for the peripheral T cell compartment. Scand J Immunol. 2012;75(4):436–44.

    Article  CAS  Google Scholar 

  44. Morbach H, Eichhorn EM, Liese JG, Girschick HJ. Reference values for B cell subpopulations from infancy to adulthood. Clin Exp Immunol. 2010;162(2):271–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for their contributions to the study. These studies were supported by the Intramural Research Program, NIH Clinical Center, US National Institutes of Health (NIH); the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the ANR-FNS LTh-MSMD-CMCD (ANR-18-CE93-0008-01), The Rockefeller University, and the National Institutes of Health (# R01AI127564).The content of this article does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. government.

Funding

These studies were supported by the Intramural Research Program, NIH Clinical Center, US National Institutes of Health (NIH); the French National Research Agency (ANR) under the “Investments for the Future” program (ANR-10-IAHU-01), the ANR-FNS LTh-MSMD-CMCD (ANR-18-CE93-0008–01), The Rockefeller University, and the National Institutes of Health (# R01AI127564).

Author information

Authors and Affiliations

Authors

Contributions

SG performed experiments and wrote the first draft of the manuscript. HSK designed, performed, and supervised the experiments. JC diagnosed the index patient, collected biologic and clinical data. MG enrolled the patients and organized sample shipments. JN, JS, DY, MM, SS, and VO performed experiments. TAF, AP, MSL, HSK, and SDR revised and analyzed the data, and collaborated with the manuscript writing. SDR supervised the project.

Corresponding author

Correspondence to Sergio D. Rosenzweig.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, S., Kuehn, H.S., Chinen, J. et al. CARD9 Expression Pattern, Gene Dosage, and Immunodeficiency Phenotype Revisited. J Clin Immunol 42, 336–349 (2022). https://doi.org/10.1007/s10875-021-01173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-021-01173-6

Keywords

Navigation