Skip to main content

Advertisement

Log in

IKAROS-Associated Diseases in 2020: Genotypes, Phenotypes, and Outcomes in Primary Immune Deficiency/Inborn Errors of Immunity

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

IKAROS, encoded by IKZF1, is a zinc finger transcription factor and a critical regulator of hematopoiesis. Mutations in IKZF1 have been implicated in immune deficiency, autoimmunity, and malignancy in humans. Somatic IKZF1 loss-of-function mutations and deletions have been shown to increase predisposition to the development of B cell acute lymphoblastic leukemia (B-ALL) and associated with poor prognosis. In the last 4 years, germline heterozygous IKZF1 mutations have been reported in primary immune deficiency/inborn errors of immunity. These allelic variants, acting by either haploinsufficiency or dominant negative mechanisms affecting particular functions of IKAROS, are associated with common variable immunodeficiency, combined immunodeficiency, or primarily hematologic phenotypes in affected patients. In this review, we provide an overview of genetic, clinical, and immunological manifestations in patients with IKZF1 mutations, and the molecular and cellular mechanisms that contribute to their disease as a consequence of IKAROS dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lo K, Landau NR, Smale ST. LyF-1, a transcriptional regulator that interacts with a novel class of promoters for lymphocyte-specific genes. Mol Cell Biol. 1991;11(10):5229–43. https://doi.org/10.1128/mcb.11.10.5229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Georgopoulos K, Moore DD, Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science. 1992;258(5083):808–12. https://doi.org/10.1126/science.1439790.

    Article  CAS  PubMed  Google Scholar 

  3. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell. 1994;79(1):143–56.

    Article  CAS  Google Scholar 

  4. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell. 1995;83(2):289–99.

    Article  CAS  Google Scholar 

  5. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, et al. Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity. 1996;5(6):537–49. https://doi.org/10.1016/s1074-7613(00)80269-1.

    Article  CAS  PubMed  Google Scholar 

  6. Francis OL, Payne JL, Su RJ, Payne KJ. Regulator of myeloid differentiation and function: the secret life of Ikaros. World J Biol Chem. 2011;2(6):119–25. https://doi.org/10.4331/wjbc.v2.i6.119.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Allman D, Dalod M, Asselin-Paturel C, Delale T, Robbins SH, Trinchieri G, et al. Ikaros is required for plasmacytoid dendritic cell differentiation. Blood. 2006;108(13):4025–34. https://doi.org/10.1182/blood-2006-03-007757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dijon M, Bardin F, Murati A, Batoz M, Chabannon C, Tonnelle C. The role of Ikaros in human erythroid differentiation. Blood. 2008;111(3):1138–46. https://doi.org/10.1182/blood-2007-07-098202.

    Article  CAS  PubMed  Google Scholar 

  9. Papathanasiou P, Perkins AC, Cobb BS, Ferrini R, Sridharan R, Hoyne GF, et al. Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity. 2003;19(1):131–44.

    Article  CAS  Google Scholar 

  10. Malinge S, Thiollier C, Chlon TM, Dore LC, Diebold L, Bluteau O, et al. Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood. 2013;121(13):2440–51. https://doi.org/10.1182/blood-2012-08-450627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, et al. Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J. 1997;16(8):2004–13. https://doi.org/10.1093/emboj/16.8.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kelley CM, Ikeda T, Koipally J, Avitahl N, Wu L, Georgopoulos K, et al. Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Curr Biol. 1998;8(9):508–15.

    Article  CAS  Google Scholar 

  13. Honma Y, Kiyosawa H, Mori T, Oguri A, Nikaido T, Kanazawa K, et al. Eos: a novel member of the Ikaros gene family expressed predominantly in the developing nervous system. FEBS Lett. 1999;447(1):76–80. https://doi.org/10.1016/s0014-5793(99)00265-3.

    Article  CAS  PubMed  Google Scholar 

  14. Perdomo J, Holmes M, Chong B, Crossley M. Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. J Biol Chem. 2000;275(49):38347–54. https://doi.org/10.1074/jbc.M005457200.

    Article  CAS  PubMed  Google Scholar 

  15. Hahm K, Cobb BS, McCarty AS, Brown KE, Klug CA, Lee R, et al. Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev. 1998;12(6):782–96. https://doi.org/10.1101/gad.12.6.782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Molnar A, Georgopoulos K. The Ikaros gene encodes a family of functionally diverse zinc finger DNA-binding proteins. Mol Cell Biol. 1994;14(12):8292–303. https://doi.org/10.1128/mcb.14.12.8292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun L, Liu A, Georgopoulos K. Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. EMBO J. 1996;15(19):5358–69.

    Article  CAS  Google Scholar 

  18. Georgopoulos K, Winandy S, Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Annu Rev Immunol. 1997;15:155–76. https://doi.org/10.1146/annurev.immunol.15.1.155.

    Article  CAS  PubMed  Google Scholar 

  19. Sun L, Heerema N, Crotty L, Wu X, Navara C, Vassilev A, et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci U S A. 1999;96(2):680–5. https://doi.org/10.1073/pnas.96.2.680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4. https://doi.org/10.1038/nature06866.

    Article  CAS  PubMed  Google Scholar 

  21. Nakase K, Ishimaru F, Avitahl N, Dansako H, Matsuo K, Fujii K, et al. Dominant negative isoform of the Ikaros gene in patients with adult B-cell acute lymphoblastic leukemia. Cancer Res. 2000;60(15):4062–5.

    CAS  PubMed  Google Scholar 

  22. Meleshko AN, Movchan LV, Belevtsev MV, Savitskaja TV. Relative expression of different Ikaros isoforms in childhood acute leukemia. Blood Cells Mol Dis. 2008;41(3):278–83. https://doi.org/10.1016/j.bcmd.2008.06.006.

    Article  CAS  PubMed  Google Scholar 

  23. John LB, Ward AC. The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol. 2011;48(9–10):1272–8. https://doi.org/10.1016/j.molimm.2011.03.006.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas RM, Chen C, Chunder N, Ma L, Taylor J, Pearce EJ, et al. Ikaros silences T-bet expression and interferon-gamma production during T helper 2 differentiation. J Biol Chem. 2010;285(4):2545–53. https://doi.org/10.1074/jbc.M109.038794.

    Article  CAS  PubMed  Google Scholar 

  25. Heizmann B, Sellars M, Macias-Garcia A, Chan S, Kastner P. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways. Biochem Biophys Res Commun. 2016;470(3):714–20. https://doi.org/10.1016/j.bbrc.2016.01.060.

    Article  CAS  PubMed  Google Scholar 

  26. Dumortier A, Kirstetter P, Kastner P, Chan S. Ikaros regulates neutrophil differentiation. Blood. 2003;101(6):2219–26. https://doi.org/10.1182/blood-2002-05-1336.

    Article  CAS  PubMed  Google Scholar 

  27. Rao KN, Smuda C, Gregory GD, Min B, Brown MA. Ikaros limits basophil development by suppressing C/EBP-alpha expression. Blood. 2013;122(15):2572–81. https://doi.org/10.1182/blood-2013-04-494625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heizmann B, Kastner P, Chan S. The Ikaros family in lymphocyte development. Curr Opin Immunol. 2018;51:14–23. https://doi.org/10.1016/j.coi.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  29. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. https://doi.org/10.1056/NEJMoa0808253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kastner P, Dupuis A, Gaub MP, Herbrecht R, Lutz P, Chan S. Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. Am J Blood Res. 2013;3(1):1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldman FD, Gurel Z, Al-Zubeidi D, Fried AJ, Icardi M, Song C, et al. Congenital pancytopenia and absence of B lymphocytes in a neonate with a mutation in the Ikaros gene. Pediatr Blood Cancer. 2012;58(4):591–7. https://doi.org/10.1002/pbc.23160.

    Article  PubMed  Google Scholar 

  32. Kuehn HS, Boisson B, Cunningham-Rundles C, Reichenbach J, Stray-Pedersen A, Gelfand EW, et al. Loss of B cells in patients with heterozygous mutations in IKAROS. N Engl J Med. 2016;374(11):1032–43. https://doi.org/10.1056/NEJMoa1512234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoshino A, Okada S, Yoshida K, Nishida N, Okuno Y, Ueno H, et al. Abnormal hematopoiesis and autoimmunity in human subjects with germline IKZF1 mutations. J Allergy Clin Immunol. 2017;140(1):223–31. https://doi.org/10.1016/j.jaci.2016.09.029.

    Article  CAS  PubMed  Google Scholar 

  34. Bogaert DJ, Kuehn HS, Bonroy C, Calvo KR, Dehoorne J, Vanlander AV, et al. A novel IKAROS haploinsufficiency kindred with unexpectedly late and variable B-cell maturation defects. J Allergy Clin Immunol. 2018;141(1):432–5 e7. https://doi.org/10.1016/j.jaci.2017.08.019.

    Article  CAS  PubMed  Google Scholar 

  35. Dieudonne Y, Guffroy A, Vollmer O, Carapito R, Korganow AS. IKZF1 loss-of-function variant causes autoimmunity and severe familial antiphospholipid syndrome. J Clin Immunol. 2019;39(4):353–7. https://doi.org/10.1007/s10875-019-00643-2.

    Article  PubMed  Google Scholar 

  36. Van Nieuwenhove E, Garcia-Perez JE, Helsen C, Rodriguez PD, van Schouwenburg PA, Dooley J, et al. A kindred with mutant IKAROS and autoimmunity. J Allergy Clin Immunol. 2018;142(2):699–702 e12. https://doi.org/10.1016/j.jaci.2018.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sriaroon P, Chang Y, Ujhazi B, Csomos K, Joshi HR, Zhou Q, et al. Familial immune thrombocytopenia associated with a novel variant in IKZF1. Front Pediatr. 2019;7:139. https://doi.org/10.3389/fped.2019.00139.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Groth DJ, Lakkaraja MM, Ferreira JO, Feuille EJ, Bassetti JA, Kaicker SM. Management of chronic immune thrombocytopenia and presumed autoimmune hepatitis in a child with IKAROS haploinsufficiency. J Clin Immunol. 2020;40(4):653–7. https://doi.org/10.1007/s10875-020-00781-y.

    Article  PubMed  Google Scholar 

  39. Eskandarian Z, Fliegauf M, Bulashevska A, Proietti M, Hague R, Smulski CR, et al. Assessing the functional relevance of variants in the IKAROS family zinc finger protein 1 (IKZF1) in a cohort of patients with primary immunodeficiency. Front Immunol. 2019;10:568. https://doi.org/10.3389/fimmu.2019.00568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen QY, Wang XC, Wang WJ, Zhou QH, Liu DR, Wang Y. B-cell deficiency: a de novo IKZF1 patient and review of the literature. J Investig Allergol Clin Immunol. 2018;28(1):53–6. https://doi.org/10.18176/jiaci.0207.

    Article  CAS  PubMed  Google Scholar 

  41. Kuehn HS, Niemela JE, Stoddard J, Ciullini Mannurita S, Shahin T, Goel S, et al. Germline IKAROS dimerization haploinsufficiency causes hematologic cytopenias and malignancies. Blood. 2020. https://doi.org/10.1182/blood.2020007292.

  42. Boutboul D, Kuehn HS, Van de Wyngaert Z, Niemela JE, Callebaut I, Stoddard J, et al. Dominant-negative IKZF1 mutations cause a T, B, and myeloid cell combined immunodeficiency. J Clin Invest. 2018;128(7):3071–87. https://doi.org/10.1172/JCI98164.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nunes-Santos CJ, Kuehn HS, Rosenzweig SD. IKAROS family zinc finger 1-associated diseases in primary immunodeficiency patients. Immunol Allergy Clin N Am. 2020;40(3):461–70. https://doi.org/10.1016/j.iac.2020.04.004.

    Article  Google Scholar 

  44. Iacobucci I, Storlazzi CT, Cilloni D, Lonetti A, Ottaviani E, Soverini S, et al. Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114(10):2159–67. https://doi.org/10.1182/blood-2008-08-173963.

    Article  CAS  PubMed  Google Scholar 

  45. Vairy S, Tran TH. IKZF1 alterations in acute lymphoblastic leukemia: the good, the bad and the ugly. Blood Rev. 2020:100677. https://doi.org/10.1016/j.blre.2020.100677.

  46. Olsson L, Johansson B. Ikaros and leukaemia. Br J Haematol. 2015;169(4):479–91. https://doi.org/10.1111/bjh.13342.

    Article  CAS  PubMed  Google Scholar 

  47. Iacobucci I, Iraci N, Messina M, Lonetti A, Chiaretti S, Valli E, et al. IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia. PLoS One. 2012;7(7):e40934. https://doi.org/10.1371/journal.pone.0040934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27(31):5202–7. https://doi.org/10.1200/JCO.2008.21.6408.

    Article  CAS  PubMed  Google Scholar 

  49. van der Veer A, Zaliova M, Mottadelli F, De Lorenzo P, Te Kronnie G, Harrison CJ, et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood. 2014;123(11):1691–8. https://doi.org/10.1182/blood-2013-06-509794.

    Article  CAS  PubMed  Google Scholar 

  50. Churchman ML, Qian M, Te Kronnie G, Zhang R, Yang W, Zhang H, et al. Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell. 2018;33(5):937–48 e8. https://doi.org/10.1016/j.ccell.2018.03.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cytlak U, Resteu A, Bogaert D, Kuehn HS, Altmann T, Gennery A, et al. Ikaros family zinc finger 1 regulates dendritic cell development and function in humans. Nat Commun. 2018;9(1):1239. https://doi.org/10.1038/s41467-018-02977-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kellner ES, Krupski C, Kuehn HS, Rosenzweig SD, Yoshida N, Kojima S, et al. Allogeneic hematopoietic stem cell transplant outcomes for patients with dominant-negative IKFZ1/IKAROS mutations. J Allergy Clin Immunol. 2019;144:339–42. https://doi.org/10.1016/j.jaci.2019.03.025.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These studies were supported by the Intramural Research Program, NIH Clinical Center, US National Institutes of Health (NIH). The content of this article does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government.

Funding

This work was supported by the Intramural Research Program, NIH Clinical Center, US National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Contributions

HSK, CJNS, and SDR collected the data, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Sergio D. Rosenzweig.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuehn, H.S., Nunes-Santos, C.J. & Rosenzweig, S.D. IKAROS-Associated Diseases in 2020: Genotypes, Phenotypes, and Outcomes in Primary Immune Deficiency/Inborn Errors of Immunity. J Clin Immunol 41, 1–10 (2021). https://doi.org/10.1007/s10875-020-00936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-020-00936-x

Keywords

Navigation