Skip to main content

Advertisement

Log in

Human Disease Phenotypes Associated With Mutations in TREX1

  • CME REVIEW
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Considering that it is a single exon gene encoding a 314 amino acid protein, the genotype-phenotype landscape of TREX1 is remarkably complex. Here we briefly describe the human diseases so-far associated with mutations in TREX1, which include Aicardi-Goutières syndrome, familial chilblain lupus, systemic lupus erythematosus and retinal vasculopathy with cerebral leukodystrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lindahl T, Gally JA, Edelman GM. Properties of deoxyribonuclease 3 from mammalian tissues. J Biol Chem. 1969;244(18):5014–9.

    CAS  PubMed  Google Scholar 

  2. Perrino FW, Mazur DJ, Ward H, Harvey S. Exonucleases and the incorporation of aranucleotides into DNA. Cell Biochem Biophys. 1999;30(3):331–52.

    Article  CAS  PubMed  Google Scholar 

  3. Hoss M, Robins P, Naven TJ, Pappin DJ, Sgouros J, Lindahl T. A human DNA editing enzyme homologous to the escherichia coli DnaQ/MutD protein. EMBO J. 1999;18(13):3868–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3’– > 5’ exonucleases. J Biol Chem. 1999;274(28):19655–60.

    Article  CAS  PubMed  Google Scholar 

  5. Morita M, Stamp G, Robins P, Dulic A, Rosewell I, Hrivnak G, et al. Gene-targeted mice lacking the Trex1 (DNase III) 3’– > 5’ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol. 2004;24(15):6719–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol. 2010;11(11):1005–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Geijtenbeek TB. Host DNase TREX1 hides HIV from DNA sensors. Nat Immunol. 2010;11(11):979–80.

    Article  CAS  PubMed  Google Scholar 

  8. Hasan M, Yan N. Safeguard against DNA sensing: the role of TREX1 in HIV-1 infection and autoimmune diseases. Front Microbiol. 2014;5:193.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Abe J, Nakamura K, Nishikomori R, Kato M, Mitsuiki N, Izawa K, et al. A nationwide survey of aicardi-goutieres syndrome patients identifies a strong association between dominant TREX1 mutations and chilblain lesions: Japanese cohort study. Rheumatology (Oxford). 2014;53(3):448–58.

    Article  CAS  Google Scholar 

  10. Rice G, Patrick T, Parmar R, Taylor CF, Aeby A, Aicardi J, et al. Clinical and molecular phenotype of aicardi-goutieres syndrome. Am J Hum Genet. 2007;81(4):713–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A. 2015;167(2):296–312.

    Article  CAS  Google Scholar 

  12. Orebaugh CD, Fye JM, Harvey S, Hollis T, Perrino FW. The TREX1 exonuclease R114H mutation in aicardi-goutieres syndrome and lupus reveals dimeric structure requirements for DNA degradation activity. J Biol Chem. 2011;286(46):40246–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 cause aicardi-goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38(8):917–20.

    Article  CAS  PubMed  Google Scholar 

  14. Lehtinen DA, Harvey S, Mulcahy MJ, Hollis T, Perrino FW. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J Biol Chem. 2008;283(46):31649–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Haaxma CA, Crow YJ, van Steensel MA, Lammens MM, Rice GI, Verbeek MM, et al. A de novo p. Asp18Asn mutation in TREX1 in a patient with aicardi-goutieres syndrome. Am J Med Genet A. 2010;152A(10):2612–7.

    Article  CAS  PubMed  Google Scholar 

  16. Abe J, Izawa K, Nishikomori R, Awaya T, Kawai T, Yasumi T, et al. Heterozygous TREX1 p. Asp18Asn mutation can cause variable neurological symptoms in a family with aicardi-goutieres syndrome/familial chilblain lupus. Rheumatology (Oxford). 2013;52(2):406–8.

    Article  Google Scholar 

  17. Tungler V, Silver RM, Walkenhorst H, Gunther C, Lee-Kirsch MA. Inherited or de novo mutation affecting aspartate 18 of TREX1 results in either familial chilblain lupus or aicardi-goutieres syndrome. Br J Dermatol. 2012;167(1):212–4.

    Article  CAS  PubMed  Google Scholar 

  18. Rice G, Newman WG, Dean J, Patrick T, Parmar R, Flintoff K, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant aicardi-goutieres syndrome. Am J Hum Genet. 2007;80(4):811–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ramantani G, Kohlhase J, Hertzberg C, Innes AM, Engel K, Hunger S, et al. Expanding the phenotypic spectrum of lupus erythematosus in aicardi-goutieres syndrome. Arthritis Rheum. 2010;62(5):1469–77.

    Article  CAS  PubMed  Google Scholar 

  20. Lee-Kirsch MA, Chowdhury D, Harvey S, Gong M, Senenko L, Engel K, et al. A mutation in TREX1 that impairs susceptibility to granzyme a-mediated cell death underlies familial chilblain lupus. J Mol Me d (Berl). 2007;85(5):531–7.

    Article  CAS  Google Scholar 

  21. Fye JM, Orebaugh CD, Coffin SR, Hollis T, Perrino FW. Dominant mutation of the TREX1 exonuclease gene in lupus and aicardi-goutieres syndrome. J Biol Chem. 2011;286(37):32373–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bailey SL, Harvey S, Perrino FW, Hollis T. Defects in DNA degradation revealed in crystal structures of TREX1 exonuclease mutations linked to autoimmune disease. DNA Repair (Amst). 2012;11(1):65–73.

    Article  CAS  Google Scholar 

  23. Fye JM, Coffin SR, Orebaugh CD, Hollis T, Perrino FW. The Arg-62 residues of the TREX1 exonuclease act across the dimer interface contributing to catalysis in the opposing protomers. J Biol Chem. 2014;289(16):11556–65.

    Article  CAS  PubMed  Google Scholar 

  24. Dale RC, Tang SP, Heckmatt JZ, Tatnall FM. Familial systemic lupus erythematosus and congenital infection-like syndrome. Neuropediatrics. 2000;31(3):155–8.

    Article  CAS  PubMed  Google Scholar 

  25. De Laet C, Goyens P, Christophe C, Ferster A, Mascart F, Dan B. Phenotypic overlap between infantile systemic lupus erythematosus and aicardi-goutieres syndrome. Neuropediatrics. 2005;36(6):399–402.

    Article  PubMed  Google Scholar 

  26. Crow YJ, Livingston JH. Aicardi-goutieres syndrome: an important Mendelian mimic of congenital infection. Dev Med Child Neurol. 2008;50(6):410–6.

    Article  PubMed  Google Scholar 

  27. Crow YJ, Zaki MS, Abdel-Hamid MS, Abdel-Salam G, Boespflug-Tanguy O, Cordeiro NJ, et al. Mutations in ADAR1, IFIH1, and RNASEH2B Presenting As Spastic Paraplegia. Neuropediatrics. 2014.

  28. Jepps H, Seal S, Hattingh L, Crow YJ. The neonatal form of aicardi-goutieres syndrome masquerading as congenital infection. Early Hum Dev. 2008;84(12):783–5.

    Article  CAS  PubMed  Google Scholar 

  29. Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutieres syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case–control study. Lancet Neurol. 2013;12(12):1159–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cuadrado E, Vanderver A, Brown KJ, Sandza A, Takanohashi A, Jansen MH, et al. Aicardi-Goutieres syndrome harbours abundant systemic and brain-reactive autoantibodies. Ann Rheum Dis. 2014.

  31. Rasmussen M, Skullerud K, Bakke SJ, Lebon P, Jahnsen FL. Cerebral thrombotic microangiopathy and antiphospholipid antibodies in aicardi-goutieres syndrome–report of two sisters. Neuropediatrics. 2005;36(1):40–4.

    Article  CAS  PubMed  Google Scholar 

  32. Olivieri I, Cattalini M, Tonduti D, La Piana R, Uggetti C, Galli J, et al. Dysregulation of the immune system in aicardi-goutieres syndrome: another example in a TREX1-mutated patient. Lupus. 2013;22(10):1064–9.

    Article  CAS  PubMed  Google Scholar 

  33. Jarukitsopa S, Hoganson DD, Crowson CS, Sokumbi O, Davis MD, Michet CJ, et al. Epidemiology of systemic lupus erythematosus and cutaneous lupus in a predominantly white population in the United States. Arthritis care & research. 2014.

  34. Hedrich CM, Fiebig B, Hauck FH, Sallmann S, Hahn G, Pfeiffer C, et al. Chilblain lupus erythematosus–a review of literature. Clin Rheumatol. 2008;27(8):949–54.

    Article  CAS  PubMed  Google Scholar 

  35. Lee-Kirsch MA, Gong M, Schulz H, Ruschendorf F, Stein A, Pfeiffer C, et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet. 2006;79(4):731–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Yamashiro K, Tanaka R, Li Y, Mikasa M, Hattori N. A TREX1 mutation causing cerebral vasculopathy in a patient with familial chilblain lupus. J Neurol. 2013;260(10):2653–5.

    Article  PubMed  Google Scholar 

  37. Sugiura K, Takeichi T, Kono M, Ito Y, Ogawa Y, Muro Y, et al. Severe chilblain lupus is associated with heterozygous missense mutations of catalytic amino acids or their adjacent mutations in the exonuclease domains of 3'-repair exonuclease 1. J Investig Dermatol. 2012;132(12):2855–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gunther C, Berndt N, Wolf C, Lee-Kirsch MA. Familial Chilblain Lupus Due to a Novel Mutation in the Exonuclease III Domain of 3’ Repair Exonuclease 1 (TREX1). JAMA dermatology. 2014.

  39. du Moulin M, Nurnberg P, Crow YJ, Rutsch F. Cerebral vasculopathy is a common feature in Aicardi-Goutieres syndrome associated with SAMHD1 mutations. Proc Natl Acad Sci U S A. 2011;108 (26):E232; author reply E3.

  40. Ravenscroft JC, Suri M, Rice GI, Szynkiewicz M, Crow YJ. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet A. 2011;155A(1):235–7.

    Article  PubMed  Google Scholar 

  41. Gunther C, Hillebrand M, Brunk J, Lee-Kirsch MA. Systemic involvement in TREX1-associated familial chilblain lupus. J Am Acad Dermatol. 2013;69(4):e179–81.

    Article  PubMed  Google Scholar 

  42. Zhou Q, Yang D, Ombrello AK, Zavialov AV, Toro C, Stone DL, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N Engl J Med. 2014;370(10):911–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med. 2014;370(10):921–31.

    Article  PubMed  Google Scholar 

  44. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Montealegre Sanchez GA, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371(6):507–18.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Crow YJ, Casanova JL. STING-associated vasculopathy with onset in infancy–a new interferonopathy. N Engl J Med. 2014;371(6):568–71.

    Article  PubMed  Google Scholar 

  46. Peschke K, Friebe F, Zimmermann N, Wahlicht T, Schumann T, Achleitner M, et al. Deregulated type I IFN response in TREX1-associated familial chilblain lupus. J Invest Dermatol. 2014;134(5):1456–9.

    Article  CAS  PubMed  Google Scholar 

  47. Gunther C, Meurer M, Stein A, Viehweg A, Lee-Kirsch MA. Familial chilblain lupus–a monogenic form of cutaneous lupus erythematosus due to a heterozygous mutation in TREX1. Dermatology. 2009;219(2):162–6.

    Article  CAS  PubMed  Google Scholar 

  48. Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, et al. Mutations in the gene encoding the 3’-5’ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39(9):1065–7.

    Article  CAS  PubMed  Google Scholar 

  49. Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 2011;12(4):270–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Barizzone N, Monti S, Mellone S, Godi M, Marchini M, Scorza R, et al. Rare variants in the TREX1 gene and susceptibility to autoimmune diseases. Biomed Res Int. 2013;2013:471703.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ellyard JI, Jerjen R, Martin JL, Lee A, Field MA, Jiang SH, et al. Whole exome sequencing in early-onset cerebral SLE identifies a pathogenic variant in TREX1. Arthritis & rheumatology. 2014.

  52. Baechler EC, Batliwalla FM, Karypis G, Gaffney PM, Ortmann WA, Espe KJ, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A. 2003;100(5):2610–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med. 2003;197(6):711–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P, Spitzer D, et al. C-terminal truncations in human 3’-5’ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39(9):1068–70.

    Article  CAS  PubMed  Google Scholar 

  55. Mateen FJ, Krecke K, Younge BR, Ford AL, Shaikh A, Kothari PH, et al. Evolution of a tumor-like lesion in cerebroretinal vasculopathy and TREX1 mutation. Neurology. 2010;75(13):1211–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. DiFrancesco JC, Novara F, Zuffardi O, Forlino A, Gioia R, Cossu F, et al. TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. 2014.

  57. Gruver AM, Schoenfield L, Coleman JF, Hajj-Ali R, Rodriguez ER, Tan CD. Novel ophthalmic pathology in an autopsy case of autosomal dominant retinal vasculopathy with cerebral leukodystrophy. J Neuroophthalmol Off J North Am Neuro-Ophthalmol Soc. 2011;31(1):20–4.

    Article  Google Scholar 

  58. Schuh E, Ertl-Wagner B, Lohse P, Wolf W, Mann JF, Lee-Kirsch MA, et al. Multiple sclerosis-like lesions and type I interferon signature in a patient with RVCL. Neurology (R) neuroimmunology & neuroinflammation 2015 2 (1): e55.

  59. Barth PG, Walter A, van Gelderen I. Aicardi-goutieres syndrome: a genetic microangiopathy? Acta Neuropathol. 1999;98(2):212–6.

    Article  CAS  PubMed  Google Scholar 

  60. Ramesh V, Bernardi B, Stafa A, Garone C, Franzoni E, Abinun M, et al. Intracerebral large artery disease in aicardi-goutieres syndrome implicates SAMHD1 in vascular homeostasis. Dev Med Child Neurol. 2010;52(8):725–32.

    Article  PubMed  Google Scholar 

  61. Akwa Y, Hassett DE, Eloranta ML, Sandberg K, Masliah E, Powell H, et al. Transgenic expression of IFN-alpha in the central nervous system of mice protects against lethal neurotropic viral infection but induces inflammation and neurodegeneration. J Immunol. 1998;161(9):5016–26.

    CAS  PubMed  Google Scholar 

  62. Campbell IL, Krucker T, Steffensen S, Akwa Y, Powell HC, Lane T, et al. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res. 1999;835(1):46–61.

    Article  CAS  PubMed  Google Scholar 

  63. van Heteren JT, Rozenberg F, Aronica E, Troost D, Lebon P, Kuijpers TW. Astrocytes produce interferon-alpha and CXCL10, but not IL-6 or CXCL8, in aicardi-goutieres syndrome. Glia. 2008;56(5):568–78.

    Article  PubMed  Google Scholar 

  64. Cuadrado E, Jansen MH, Anink J, De Filippis L, Vescovi AL, Watts C, et al. Chronic exposure of astrocytes to interferon-alpha reveals molecular changes related to aicardi-goutieres syndrome. Brain. 2013;136(Pt 1):245–58.

    Article  PubMed  Google Scholar 

  65. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110–21.

    Article  CAS  PubMed  Google Scholar 

  66. Jen J, Cohen AH, Yue Q, Stout JT, Vinters HV, Nelson S, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology. 1997;49(5):1322–30.

    Article  CAS  PubMed  Google Scholar 

  67. Yang YG, Lindahl T, Barnes DE. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell. 2007;131(5):873–86.

    Article  CAS  PubMed  Google Scholar 

  68. Stetson DB, Ko JS, Heidmann T, Medzhitov R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell. 2008;134(4):587–98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Crow YJ, Rehwinkel J. Aicardi-goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet. 2009;18(R2):R130–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Stetson DB. Endogenous retroelements and autoimmune disease. Curr Opin Immunol. 2012;24(6):692–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Gall A, Treuting P, Elkon KB, Loo YM, Gale Jr M, Barber GN, et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity. 2012;36(1):120–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Volkman HE, Stetson DB. The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol. 2014;15(5):415–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Ablasser A, Hemmerling I, Schmid-Burgk JL, Behrendt R, Roers A, Hornung V. TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner. J Immunol. 2014;192(12):5993–7.

    Article  CAS  PubMed  Google Scholar 

  74. Hasan M, Koch J, Rakheja D, Pattnaik AK, Brugarolas J, Dozmorov I, et al. Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nat Immunol. 2013;14(1):61–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Kavanagh D, Spitzer D, Kothari PH, Shaikh A, Liszewski MK, Richards A, et al. New roles for the major human 3’-5’ exonuclease TREX1 in human disease. Cell Cycle. 2008;7(12):1718–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Y.J.C. acknowledges the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 241779, the European Research Council (GA 309449: Fellowship to Y.J.C), and a state subsidy managed by the National Research Agency (France) under the “Investments for the Future” program bearing the reference ANR-10-IAHU-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanick J. Crow.

Additional information

Up to 1.0 AMA PRA Category 1 Credit™ of Continuing Medical Education Credit can now be obtained by reading this review article and completing all activity components by visiting the Clinical Immunology Society web site at http://www.clinimmsoc.org/education/continuing-medical-education/e-learning-tools/journal-cme

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, G.I., Rodero, M.P. & Crow, Y.J. Human Disease Phenotypes Associated With Mutations in TREX1 . J Clin Immunol 35, 235–243 (2015). https://doi.org/10.1007/s10875-015-0147-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0147-3

Keywords

Navigation