Skip to main content

Advertisement

Log in

Sex ratio of Stygiopontius senokuchiae (Dirivultidae, Copepoda), an endemic copepod species at deep hydrothermal vent sites, is biased to males

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Stygiopontius copepods (Dirivultidae, Siphonostomatoida, Crustacea) are among the most successful meiobenthic organisms at deep-sea hydrothermal vents. Most of their ecology is not yet known, including the spatiotemporal differences in their sex ratios and their controlling factors. We investigated spatial variation in the sex ratio of adult Stygiopontius senokuchiae and its association with environmental parameters, including food quality at hydrothermal vent chimney structures in the calderas of three neighboring sea knolls (Bayonnaise Knoll, Myojin Knoll, and Myojin-sho Caldera) in the western North Pacific Ocean. Their sex ratio was significantly biased to males from 1:1, which was different from some of the other Stygiopontius species. The ratios did not show a significant correlation with the density of total adults. While previous studies have shown that the abundance of S. senokuchiae is positively associated with δ13C values of detritus on active chimneys, multivariate analyses in this study did not detect any significant association between their sex ratio and any investigated parameters including δ13C. These findings suggest that neither population density nor chemoautotrophic food availability drives the sexual difference in the spatial distribution around vents among the adults of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to software and statistical methods. PRIMER-E, Plymouth, p 214

    Google Scholar 

  • Burris ZP, Dam HG (2015) First evidence of biased sex ratio at birth in a calanoid copepod. Limnol Oceanogr 60:722–731

    Article  Google Scholar 

  • Buskey EJ, Lenz PH, Hartline DK (2002) Escape behavior of planktonic copepods in response to hydrodynamic disturbances: high-speed video analysis. Mar Ecol Prog Ser 235:135–146

    Article  Google Scholar 

  • Danovaro R, Fraschetti S (2002) Meiofaunal vertical zonation on hard bottoms: comparison with soft-bottom meiofauna. Mar Ecol Prog Ser 230:159–169

    Article  Google Scholar 

  • Van Dover CL (2000) The ecology of deep-sea hydrothermal vents. Princeton University Press, Princeton, p 456

    Google Scholar 

  • Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740. https://doi.org/10.1038/nrmicro1992

    Article  Google Scholar 

  • Fujikura K, Kojima S, Fujiwara Y, Hashimoto J, Okutani T (2000) New distribution records of vesicomyid bivalves from deep-sea chemosynthesis-based communities in Japanese waters. Venus 59:103–121

    Google Scholar 

  • Gollner S, Zekely J, Van Dover CL, Govenar B, Le Bris N, Nemeschkal HL, Bright M (2006) Benthic copepod communities associated with tubeworm and mussel aggregations on the East Pacific Rise. Cah Biol Mar 47: 397–402

  • Gollner S, Ivanenko VN, Arbizu PM, Bright M (2010) Advances in taxonomy, ecology, and biogeography of Dirivultidae (Copepoda) associated with chemosynthetic environments in the deep sea. PLoS ONE 5(8):e9801. https://doi.org/10.1371/journal.pone.0009801

    Article  Google Scholar 

  • Gollner S, Fontaneto D, Martínez Arbizu P (2011) Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges. Mar Biol 158:221–231

    Article  Google Scholar 

  • Gollner S, Govenar B, Fisher CR, Bright M (2015) Size matters at deep-sea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna. Mar Ecol Prog Ser 520:57–66

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    Article  Google Scholar 

  • Heptner MV, Ivanenko VN (2002) Copepoda (Crustacea) of hydrothermal ecosystems of the world ocean. Arthropoda Sel 11:117–134

    Google Scholar 

  • Hicks GRF (1977) Breeding activity of marine phytal harpacticoid copepods from Cook Straight. N Z J Mar Freshw Res 11:645–666

    Article  Google Scholar 

  • Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanography Mar Biol Ann Rev 21:67–175

    Google Scholar 

  • Hirst AG, Kiørboe T (2014) Macroevolutionary patterns of sexual size dimorphism in copepods. Proc R Soc B 281:20140739. https://doi.org/10.1098/rspb.2014.0739

    Article  Google Scholar 

  • Hirst AG, Bonnet D, Conway DVP, Kiørboe T (2010) Does predation controls adult sex ratios and longevities in marine pelagic copepods? Limnol Oceanogr 55:2193–2206

    Article  Google Scholar 

  • Humes AG (1987) Copepods from deep-sea hydrothermal vents. Bull Mar Sci 41:645–788

    Google Scholar 

  • Humes AG (1989) New species of Stygiopontius (Copepoda, Siphonostomatoida) from a deep-sea hydrothermal vent at the East Pacific Rise. Zool Scr 18:103–113

    Article  Google Scholar 

  • Humes AG (1990) Copepods (Siphonostomatoida) from a deep-sea hydrothermal vent at the Mariana Back-Arc Basin in the Pacific, including a new genus and species. J Nat Hist 24:289–304

    Article  Google Scholar 

  • Humes AG (1991) Siphonostomatoid copepods from a deep-water hydrothermal zone in the Lau Basin, South Pacific. Bull Mus Natl Hist Nat Paris 4 ser 13 sect A(1–2):121–134

    Google Scholar 

  • Humes AG (1996) Deep-sea Copepoda (Siphonostomatoida) from hydrothermal sites on the Mid-Atlantic Ridge at 23°W and 37°N. Bull Mar Sci 58:609–653

    Google Scholar 

  • Humes AG (1997) Siphonostomatoid copepods from deep-sea hydrothermal sites on the Mid-Atlantic Ridge west of the Azores. Cah Biol Mar 38:63–77

  • Huys R, Gee JM, Moore CG, Hamond R (1996) Marine and brackish water harpacticoid copepods, part 1. Field Studies Council, Shrewsbury, p 352

    Google Scholar 

  • Itô T (1971) The biology of a harpacticoid copepod, Harpacticus uniremis Kröyer. J Fac Sci Hokkaido Univ Ser 6 Zool 18:235–255

    Google Scholar 

  • Ivanenko VN (1998) Deep-sea hydrothermal vent Copepoda (Siphonostomatoida, Dirivultidae) in plankton over the Mid-Atlantic Ridge (29uN), morphology of their first copepodid stage. Zool Zh 77:1249–1256 (in Russian with English abstract)

    Google Scholar 

  • Ivanenko VN, Ferrari FD (2013) New species of Stygiopontius (Copepoda: Siphonostomatoida: Dirivultidae) from a deep-sea hydrothermal volcano in the New Ireland Fore-Arc system (Papua New Guinea). J Mar Biol Assoc UK 93:1805–1812

    Article  Google Scholar 

  • Ivanenko VN, Martínez-Arbizu SJ (2006) Copepods of the family Dirivultidae (Siphonostomatoida) from deep-sea hydrothermal vent fields on the Mid-Atlantic Ridge at 14°N and 5°S. Zootaxa 1277:1–21

    Article  Google Scholar 

  • Kiørboe T (2006) Sex, sex-ratios, and the dynamics of pelagic copepod populations. Oecologia 148:40–50

    Article  Google Scholar 

  • Limén H, Levesque C, Juniper SK (2007) POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Mar Biol 153:129–139

    Article  Google Scholar 

  • Mironova K, Pasternak A (2017) Female gonad morphology of small copepods Oithona similis and Microsetella norvegica. Polar Biol 40:685–696

    Article  Google Scholar 

  • Mullineaux LS, Metaxas A, Beaulieu SE, Bright M, Gollner S, Grupe BM, Herrera S, Kellner JB, Levin LA, Mitarai S, Neubert MG, Thurnherr AM, Tunnicliffe V, Watanabe HK, Won Y-J (2018) Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework. Front Mar Sci 5:49. https://doi.org/10.3389/fmars.2018.00049

    Article  Google Scholar 

  • Nomaki H, Uejima Y, Ogawa NO, Yamane M, Watanabe HK, Senokuchi R, Joan M, Bernhard JM, Kitahashi T, Miyairi Y, Yokoyama Y, Ohkouchi N, Shimanaga M (2019) Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: natural-abundance radiocarbon and stable isotope analyses. Mar Ecol Prog Ser 622:49–65

    Article  Google Scholar 

  • Ohtsuka S, Huys R (2001) Sexual dimorphism in calanoid copepods: morphology and function. Hydrobiol 453(454):441–466

    Article  Google Scholar 

  • Senokuchi R, Nomaki H, Watanabe HK, Kitahashi T, Ogawa NO, Shimanaga M (2018) Chemoautotrophic food availability influences copepod assemblage composition at deep hydrothermal vent sites within sea knoll calderas in the northwestern Pacific. Mar Ecol Prog Ser 607:37–51

    Article  Google Scholar 

  • Setoguchi Y, Nomaki H, Kitahashi T, Watanabe H, Inoue K, Ogawa NO, Shimanaga M (2014) Nematode community composition in hydrothermal vent and adjacent non-vent fields around Myojin Knoll, a seamount on the Izu-Ogasawara Arc in the western North Pacific Ocean. Mar Biol 161:1775–1785

    Article  Google Scholar 

  • Shimanaga M, Lee W, Nomaki H, Iijima K (2009) Sex ratio and gut contents of the deep-sea harpacticoid Neocervinia itoi and other cerviniids: A possibility of reduced foraging among males. J Crust Biol 29:183–191

    Article  Google Scholar 

  • Shimode S, Shirayama Y (2006) Diel vertical migration and life strategies of two phytal-dwelling harpacticoids Ambunguipes rufocincta and Eudactylops spectabilis. Plankton Benthos Res 1:42–53

    Article  Google Scholar 

  • Stiling PD (1992) Introductory ecology. Prentice-Hall, Englewood Cliffs, p 597

    Google Scholar 

  • Tsurumi M, De Graaf R, Tunnicliffe V (2003) Distributional and biological aspects of copepods at hydrothermal vents on the Juan de Fuca Ridge, north-east Pacific Ocean. J Mar Biol Ass of the UK 83:469–477

    Article  Google Scholar 

  • Uejima Y, Nomaki H, Senokuchi R, Setoguchi Y, Kitahashi T, Watanabe HK, Shimanaga M (2017) Meiofaunal communities in hydrothermal vent and proximate non-vent habitats around neighboring seamounts on the Izu-Ogasawara Arc, western North Pacific Ocean. Mar Biol 164:183

    Article  Google Scholar 

  • Uyeno D, Watanabe HK, Shimanaga M (2018) A new dirivultid copepod (Siphonostomatoida) from hydrothermal vent fields of the Izu-Bonin Arc in the North Pacific Ocean. Zootaxa 4415:381–389

    Article  Google Scholar 

  • Voordouw MJ, Anholt BR (2002) Heritability of sex tendency in a harpacticoid copepod, Tigriopus californicus. Evolution 56:1754–1763

    Article  Google Scholar 

  • Voordouw MJ, Robinson HE, Stebbins G, Albert AYK, Anholt BR (2005) Larval density and the Charnov–Bull model of adaptive environmental sex determination in a copepod. Canadian J Zool 83:943–954

    Article  Google Scholar 

  • Walter TC, Boxshall G (2019) World of copepods database. https://www.marinespecies.org/copepoda. Accessed 18 November 2019

  • Watanabe H, Kojima S (2015) Vent fauna in the Okinawa Trough. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafloor biosphere linked to global hydrothermal systems. TAIGA concept. Springer, Tokyo, pp 449–459

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, Englewood Cliffs, p 663

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the captain and crews of the RV ‘Natsushima,’ as well as the operational team of the ROV ‘Hyper-Dolphin.’ Comments by anonymous reviewers greatly improved our manuscript. This study was partly funded by a grant from the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) program (Grant Numbers 26440246 and 19H03305), and a Grant from Research Institute of Marine Invertebrates in 2019 (https://www.rimi.or.jp/josei/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohiro Shimanaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senokuchi, R., Nomaki, H., Uyeno, D. et al. Sex ratio of Stygiopontius senokuchiae (Dirivultidae, Copepoda), an endemic copepod species at deep hydrothermal vent sites, is biased to males. J Oceanogr 76, 341–350 (2020). https://doi.org/10.1007/s10872-020-00548-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-020-00548-4

Keywords

Navigation