Skip to main content
Log in

Structural Topology of Weak Non-covalent Interactions in a Layered Supramolecular Coordination Solid of Zinc Involving 3-Aminopyridine and Benzoate: Experimental and Theoretical Studies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A new Zn(II) coordination solid based on benzoate (Bz) and 3-aminopyridine (3‒Apy) viz., [Zn(3‒Apy)2(Bz)2] (1) has been synthesized and its crystal structure has been determined by single crystal X-ray diffraction analysis. The compound is characterized by IR, UV-Vis-NIR, thermal and elemental analysis. X-ray powder diffraction technology has been performed for the complex to investigate whether the analyzed crystal structure is truly representative of the bulk materials. The new compound crystallizes in the triclinic, \(P\stackrel{-}{1}\) space group with unit cell dimensions: a = 10.0848(11) Å, b = 11.0351(11) Å, c = 11.4213(13) Å. V = 1139.1(2) and Z = 2. Intermolecular N‒H⋯O and π‒π contacts between Zn(II) monomeric units in the crystal structure results in a supramolecular polymeric chain. Further, the extended 1D chain is self assembled via weak intermolecular C‒H⋯O hydrogen bonding interaction to result layered network structure. The interactions have been characterized by analyzing the topology of electron density within the realm of quantum theory of atoms in molecules and non-covalent interaction index calculations.

Graphical Abstract

A new Zn(II) coordination solid based on 3-aminopyridine and benzoic acid, [Zn(3‒Apy)2(Bz)2] (1) has been successfully synthesized. Intermolecular N‒H⋯O and π‒π contacts between Zn(II) monomeric units in the crystal structure results in a supramolecular polymeric chain. The extended 1D chain is self assembled via intermolecular C‒H⋯O hydrogen bonding interaction to result layered network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexandrov EV, Blatov VA, Kochetkov AV, Proserpio DM (2011) CrystEngComm 13:3947–3958

    Article  CAS  Google Scholar 

  2. Wang X, Tian AX, Wang XL (2015) RSC Adv 5:41155–41168

    Article  CAS  Google Scholar 

  3. Zhang HM, Yang J, Liu YY, Kang DW, Ma JF (2015) CrystEngComm 17:3181–3196

    Article  CAS  Google Scholar 

  4. Du X, Wang YY, Zhao YQ (2014) J Struct Chem 55:734–738

    Article  CAS  Google Scholar 

  5. Yoon MY, Srirambalaji R, Kim K (2012) Chem Rev 112:1196–1231

    Article  CAS  Google Scholar 

  6. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Chem Rev 112:1105–1125

    Article  CAS  Google Scholar 

  7. Shi BB, Liu SF, Guo L, Li XQ, Gang L (2014) Polyhedron 83:77–80

    Article  CAS  Google Scholar 

  8. Burrows AD, Frost CG, Mahon MF, Richardson C (2008) Angew Chem Int Ed 47:8482–8486

    Article  CAS  Google Scholar 

  9. Luisi BS, Ma Z, Moulton BJ (2007) J Chem Crystallogr 37:743–747

    Article  CAS  Google Scholar 

  10. Sarma B, Nath NK, Bhogala BR, Nangia A (2009) Cryst Growth Des 9:1546–1557

    Article  CAS  Google Scholar 

  11. Majumder A, Gramlich V, Rosair GM, Batten SR, Masuda JD, Fallah EI, Ribas MS, Sutter J, Desplanches JP, Mitra C S (2006) Cryst Growth Des 6:2355–2368

    Article  CAS  Google Scholar 

  12. Lah L, Clerac R (2009) Polyhedron 28:2466–2472

    Article  CAS  Google Scholar 

  13. Kempte R, Brenner S, Arndt P (1996) Organometallics 15:1071–1074

    Article  Google Scholar 

  14. Seth SK, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S (2011) Cryst Growth Des 11:3250–3265

    Article  CAS  Google Scholar 

  15. Golder RK, Fitchett CM, Wikaira JL, Steel PJ (2010) Acta Crystallogr E 66:1324

    Article  Google Scholar 

  16. Fun HK, Sinthya A, Jebas SR, Devadasan S (2008) Acta Crystallogr E 64:853

    Article  Google Scholar 

  17. Stabnikov PA, Zharkova GI, Alferova NI, Zubareva AP, Shusharina EA, Pervukhina NV (2011) J Struct Chem 52:371–375

    Article  CAS  Google Scholar 

  18. Dojer B, Golobicˇ A, Jaglicˇic´ Z, Kristl M, Drofenik M (2012) Monatsh Chem 143:73–80

    Article  CAS  Google Scholar 

  19. Sheldrick G (2008) Acta Cryst A 64:112–122

    Article  CAS  Google Scholar 

  20. Sheldrick GM (2000) SHELXTL-NT, version 6.12, reference manual. University of Göttingen, Göttingen

    Google Scholar 

  21. Farrugia LJ (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  22. Brandenburg K (2008) Diamond: visual crystal structure information system (version 3.1f). Crystal Impact GbR, Bonn

    Google Scholar 

  23. Cullity BD (1978) Elements of X-ray diffraction. Wesley Mass, Addison

    Google Scholar 

  24. Akyüz S (1998) J Mol Struct 449:23–27

    Article  Google Scholar 

  25. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  26. Deacon BG, Philips RJ (1980) Coord Chem Rev 33:227–250

    Article  CAS  Google Scholar 

  27. Arnaudov MG, Ivanova BB, Dinkov Sh (2005) Vibr Spectrosc 37:145–150

    Article  CAS  Google Scholar 

  28. Fuhrmann H, Brenner S, Arndt P (1996) Inorg Chem 35:6742–6745

    Article  CAS  Google Scholar 

  29. Massoud SS, Broussard KT, Mautner FA, Vicente R, Saha MK, Bernal I (2008) Inorg Chim Acta 361:123–131

    Article  CAS  Google Scholar 

  30. Peng X, Cui G, Li D, Liu T (2010) J Mol Struct 967:54–60

    Article  CAS  Google Scholar 

  31. Vargova Z, Zeleoak V, Cisaova I, Gyoryova K (2004) Thermochim Acta 423:149–157

    Article  CAS  Google Scholar 

  32. Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, New York, p 376

    Google Scholar 

  33. Bhattacharyya MK, Devi PG, Dasgupta D, Bora SJ, Das BK (2012) Polyhedron 35:62–68

    Article  CAS  Google Scholar 

  34. Bhowmik P, Chattopadhyay S, Ghosh A (2013) Inorg Chim Acta 396:66–71

    Article  CAS  Google Scholar 

  35. Christofor E, Rojas FS, Cano-Pavon JM (1991) Talanta 38:445–448

    Article  Google Scholar 

  36. Sundara Raj SS, Fun HK, Zhao PS, Jian FF, Lu LD, Yang XJ, Wang X (2000) Acta Cryst 56:742–743

    Google Scholar 

  37. Frischmann PD, Gallant AJ, Chong JH, MacLachlan MJ (2008) Inorg Chem 47:101–112

    Article  CAS  Google Scholar 

  38. Bera M, Musie GT, Powell DR (2009) Inorg Chem 48:4625–4627

    Article  CAS  Google Scholar 

  39. Zhou Z-H, Yang J-M, Wan H-L (2005) Cryst Growth Des 5:1825–1830

    Article  CAS  Google Scholar 

  40. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  41. Etter MC (1991) J Phys Chem 95:4601–4610

    Article  CAS  Google Scholar 

  42. Krische MJ, Lehn JM (2000) Struct Bond 96:3–29

    Article  CAS  Google Scholar 

  43. Yenikaya C, Poyraz M, Sarı M, Demirci F, Ilkimen H, Buyukgungor O (2009) Polyhedron 28:3526–3532

    Article  CAS  Google Scholar 

  44. Chakravorty S, Das BK (2010) Polyhedron 29:2006–2013

    Article  CAS  Google Scholar 

  45. Dutta D, Chetry S, Gogoi A, Choudhury B, Guha AK, Bhattacharyya MK (2018) Polyhedron 151:381–393

    Article  CAS  Google Scholar 

  46. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  47. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  48. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts GR, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford

  50. Tian L (2015) Multiwfn: a multifunctional wavefunction analyzer (version 3.1). http://Multiwfn.codeplex.com. Accessed 22 May

  51. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625–632

    Article  CAS  Google Scholar 

  52. Bala R, Kaur A, Kashyap M, Janzen DE (2014) J Mol Struct 1063:203–212

    Article  CAS  Google Scholar 

  53. Zhao P, Lampronti GI, Lloyd GO, Wharmby MT, Facq S, Cheetham AK, Redfern SAT (2014) Chem Mater 26:1767–1769

    Article  CAS  Google Scholar 

  54. Zhao P, Lampronti GI, Lloyd GO, Suard E, Redfern SAT (2014) J Mater Chem A 2:620–623

    Article  CAS  Google Scholar 

  55. Demir S, Kaya G (2011) Z Anorg Allg Chem 637:456–461

    Article  CAS  Google Scholar 

  56. Chi YX, Liu YQ, Hu XS, Tang XY, Liu YJ, Jin J, Niu SY, Zhang GN (2016) Z Anorg Allg Chem 642:73–80

    Article  CAS  Google Scholar 

  57. Soleimani E (2014) J Therm Anal Calorim 115:2191–2201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author (MKB) gratefully acknowledges financial support from the University Grants Commission (UGC), New Delhi [Grant No.: F. No. 42-377/2013]. The authors thank IIT, Guwahati for providing the single crystal X-ray diffraction and the Department of Chemistry, Gauhati University, Guwahati for TG data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjit K. Bhattacharyya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 159 KB)

10870_2018_723_MOESM2_ESM.tiff

Supplementary material 2 (TIFF 857 KB). Supramolecular 2D network generated by weak hydrogen bonding N‒H⋯O, C‒H⋯O and π‒π stacking interactions

Supplementary material 3 (TIF 43 KB). PXRD analysis of the complexes 1: bottom-simulated, top-experimental

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, D., Nashre-ul-Islam, S.M., Saha, U. et al. Structural Topology of Weak Non-covalent Interactions in a Layered Supramolecular Coordination Solid of Zinc Involving 3-Aminopyridine and Benzoate: Experimental and Theoretical Studies. J Chem Crystallogr 48, 156–163 (2018). https://doi.org/10.1007/s10870-018-0723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0723-5

Keywords

Navigation