Skip to main content

Advertisement

Log in

Hydrogen-Bond Reorganization of a Solid-State Dehydration Process in a Salt of Tris(hydroxymethyl)aminomethane and Sulfosalicylic Acid, Investigated by Powder X-ray Diffraction

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Hydrated solid salt of tris(hydroxymethyl)aminomethane (THAM) and sulfosalicylic acid (SA) undergoes a facile solid-state dehydration process upon heating, in which single crystals of the hydrated phase transform to a microcrystalline powder of an anhydrous product phase. The structural properties of the anhydrous phase have been determined directly from powder X-ray diffraction data, allowing rationalization of the structural changes associated with the dehydration process. The dehydration process is associated with substantial reorganization of the hydrogen bonding arrangement, while most hydrogen bonds related to SA ion are actually preserved in the transformation.

Graphical Abstract

The process relating to the formation and decomposition of a salt formed by SA and THAM—hydrated and anhydrous states was investigated and discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Griesser UJ (2006) The importance of solvates. In: Hilfiker R (ed) Polymorphism: in the pharmaceutical industry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi:10.1002/3527607889.ch8

  2. Braga D, d’Agostino S, Dichiarante E, Maini L, Grepioni F (2011) Chem Asian J 6:2214–2223

    Article  CAS  Google Scholar 

  3. Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, Desiraju GR, Dikundwar AG, Dubey R, Duggirala N (2012) Cryst Growth Des 12:2147–2152

    Article  CAS  Google Scholar 

  4. McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, Mannion R, O’Donnell E, Park A (2006) Pharm Res 23:1888–1897

    Article  CAS  Google Scholar 

  5. Good DJ, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:2252–2264

    Article  CAS  Google Scholar 

  6. Trask AV, Motherwell WDS, Jones W (2006) Int J Pharm 320:114–123

    Article  CAS  Google Scholar 

  7. Lyon SD, Sanderson MW, Vaden SL, Lappin MR, Jensen WA, Grauer GF (2010) J Am Vet Med Assoc 236:874–879

    Article  CAS  Google Scholar 

  8. Yamamoto H, Matsuda H, Mishima M, Fujiwara T, Koyama K (2006) J Surf Finish Soc 57:509–514

    Article  CAS  Google Scholar 

  9. Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS (1979) Acta Crystallogr 35:2331–2339

    Article  Google Scholar 

  10. Liu HL, Xie YF, Pan ZG, Famulari A, Guo F, Zhou Z, Martí-Rujas J (2014) Cryst Growth Des 14:6528–6536

    Article  CAS  Google Scholar 

  11. Guo F, Zhang M-Q, Famulari A, Martí-Rujas J (2013) CrystEngComm 15:6237–6243

    Article  CAS  Google Scholar 

  12. Burns JR, Finlayson B, Gauthier J (1984) Urol Int 39:36–39

    Article  CAS  Google Scholar 

  13. Capan L, Nahas GG, Manne J, Sutin KM, Helwig H, Fermon C, Gaab M, Streat S, Pfenninger E, Wiklund L (1998) Drugs 55:191–224

    Article  Google Scholar 

  14. Luchsinger PC (1961) Ann NY Acad Sci 92:743–750

    Article  CAS  Google Scholar 

  15. Zhang CG, Li Y, Luo YH, Sun BW (2013) J Chem Crystallogr 43:576–584

    Article  CAS  Google Scholar 

  16. Tusvik PH, Mostad A, Dalhus B, Rosenqvist E (1999) Acta Crystallogr 55:1113–1115

    Google Scholar 

  17. Shakked Z, Viswamitra MA, Kennard O (1980) Biochemistry 19:2567–2571

    Article  CAS  Google Scholar 

  18. Jerzykiewicz LB, Lis T (1998) Acta Crystallogr C 54:2015–2019

    Article  Google Scholar 

  19. Castellari C, Ottani S (1997) Acta Crystallogr Sect C 53:482–486

    Article  Google Scholar 

  20. Ng SW (1995) Z Kristallogr 210:287–289

    Article  CAS  Google Scholar 

  21. Bhattacharya A, Chattopadhyay B, Chakraborty S, Roy BN, Singh GP, Godbole HM, Rananaware UB, Mukherjee AK (2012) J Pharm Biomed Anal 70:280–287

    Article  CAS  Google Scholar 

  22. Ilyukhin AB, Koroteev PS, Kiskin MA, Dobrokhotova ZV, Novotortsev VM (2013) J Mol Struct 1033:187–199

    Article  CAS  Google Scholar 

  23. Fonari MS, Ganin EV, Vologzhanina AV, Antipin MY, Kravtsov VC (2010) Cryst Growth Des 10:3647–3656

    Article  CAS  Google Scholar 

  24. Ren GB, Qi MH, Chen JY, Meng KY, Zhong JL (2011) Acta Crystallogr Sect E 67:o1264

    Article  CAS  Google Scholar 

  25. Yu YH, Qian K (2009) Acta Crystallogr E65:o1278

    Google Scholar 

  26. Cheung EY, David SE, Harris KDM, Conway BR, Timmins P (2007) J Solid State Chem 180:1068–1075

    Article  CAS  Google Scholar 

  27. Kiang YH, Shi HG, Mathre DJ, Wei X, Zhang D, Panmai S (2004) Int J Pharm 280:17–26

    Article  CAS  Google Scholar 

  28. Stępniak K, Lis T, Koziol AE (2014) Z Kristallogr 218:37–38

    Google Scholar 

  29. Salunke-Gawali S, Kathawate L, Shinde Y, Puranik VG, Weyhermüller T (2012) J Mol Struct 1010:38–45

    Article  CAS  Google Scholar 

  30. Zheng ST, Zhang J, Li XX, Fang WH, Yang GY (2010) J Am Chem Soc 132:15102–15103

    Article  CAS  Google Scholar 

  31. Harris KDM, Tremayne M, Lightfoot P, Bruce PG (1994) Chem Mater 8:3543–3547

    Google Scholar 

  32. Chernyshev VV (2001) Russ Chem Bull 50:2273–2292

    Article  CAS  Google Scholar 

  33. Lightfoot P, Tremayne M, Harris KDM, Bruce PG (1992) J Chem Soc Chem Commun 14:1012–1013

    Article  Google Scholar 

  34. Kariuki BM, Zin DMS, Harris TKDM (1996) Chem Mater 8:565–569

    Article  CAS  Google Scholar 

  35. David WIF, Shankland K, Shankland K, Shankland N (1998) Chem Commun 8:931–932

    Article  Google Scholar 

  36. Huq A, Stephens PW (2003) J Pharm Sci 92:244–249

    Article  CAS  Google Scholar 

  37. Michela B, Wright JP, Vaughan GBM, Mora AJ, Fitch AN (2003) Angew Chem 42:2075–2078

    Google Scholar 

  38. Brodski VV, Peschar R, Schenk H (2005) J Appl Crystallogr 38:688–693

    Article  CAS  Google Scholar 

  39. Cheung EY, Kitchin SJ, Harris KDM, Yoshitane I, Nobuo T, Reiko K (2003) J Am Chem Soc 125:14658–14659

    Article  CAS  Google Scholar 

  40. Guo F, Harris KDM (2005) J Am Chem Soc 127:7314–7315

    Article  CAS  Google Scholar 

  41. Hirano S, Toyota S, Toda F, Fujii K, Uekuasa H (2006) Angew Chem Int Ed 45:6013–6016

    Article  Google Scholar 

  42. Guguta C, Meekes H, Gelder D (2006) Cryst Growth Des 6:2686–2692

    Article  CAS  Google Scholar 

  43. Guo F, Martí-Rujas J, Pan Z, Hughes CE, Harris KDM (2008) J Phys Chem C 112:19793–19796

    Article  CAS  Google Scholar 

  44. Fujii K, Uekusa H, Itoda N, Hasegawa G, Yonemochi E, Terada K, Pan Z, Harris KDM (2009) J Phys Chem C 114:580–586

    Article  CAS  Google Scholar 

  45. Martí-Rujas J, Morte-Rodenas A, Guo F, Thomas N, Fujii K, Kariuki BM, Harris KDM (2010) Cryst Growth Des 10:3176–3181

    Article  CAS  Google Scholar 

  46. Sheldrick GM (1997) SHELXS-97, structure solving program and program for the refinement of crystal structures from diffraction data. University of Göttingen, Göttingen

    Google Scholar 

  47. Friscic T, Trask AV, Jones W, Motherwell WDS (2006) Angew Chem Int Ed Engl 45:7546–7550

    Article  CAS  Google Scholar 

  48. Trask AV, Haynes DA, Motherwell WDS, Jones W (2006) Chem Commun 1:51–53

    Article  Google Scholar 

  49. Neumann MA (2003) J Appl Cryst 36:356–365

    Article  CAS  Google Scholar 

  50. Larson AC, Von Dreele RB (2004). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA

  51. Toby BH (2001) J Appl Cryst 34:210–213

    Article  CAS  Google Scholar 

  52. Accelrys (2011) Materials studio. Accelrys Inc., San Diego

    Google Scholar 

  53. Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Cryst 36:1487

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSFC (Nos. 20903052, 21571090), the Program for Liaoning Excellent Talents in University (LJQ 2011003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Gang Pan or Fang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XK., Ju, WC., Pan, ZG. et al. Hydrogen-Bond Reorganization of a Solid-State Dehydration Process in a Salt of Tris(hydroxymethyl)aminomethane and Sulfosalicylic Acid, Investigated by Powder X-ray Diffraction. J Chem Crystallogr 46, 1–8 (2016). https://doi.org/10.1007/s10870-015-0620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0620-0

Keywords

Navigation