Skip to main content

Advertisement

Log in

ModiBodies: A computational method for modifying nanobodies in nanobody-antigen complexes to improve binding affinity and specificity

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Nanobodies are special derivatives of antibodies, which consist of single domain fragments. They have become of considerable interest as next-generation biotechnological tools for antigen recognition. They can be easily engineered due to their high stability and compact size. Nanobodies have three complementarity-determining regions, CDRs, which are enlarged to provide a similar binding surface to that of human immunoglobulins. Here, we propose a benchmark testing algorithm that uses 3D structures of already existing protein-nanobody complexes as initial structures followed by successive mutations on the CDR domains. The aim is to find optimum binding amino acids for hypervariable residues of CDRs. We use molecular dynamics simulations to compare the binding energies of the resulting complexes with that of the known complex and accept those that are improved by mutations. We use the MDM4-VH9 complex, (PDB id 2VYR), fructose-bisphosphate aldolase from Trypanosoma congolense (PDB id 5O0W) and human lysozyme (PDB id 4I0C) as benchmark complexes. By using this algorithm, better binding nanobodies can be generated in a short amount of time. We suggest that this method can complement existing immune and synthetic library-based methods, without a need for extensive experimentation or large libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: B cells and antibodies. In: Molecular biology of the cell. 4th edition. Garland Science, (2002)

  2. Kremer, L., Garcia-Sanz, J.A.: Is the recent burst of therapeutic anti-tumor antibodies the tip of an iceberg? Front. Immunol. 9, 442 (2018)

    Article  Google Scholar 

  3. Drabek, D., Janssens, R., de Boer, E., Rademaker, R., Kloess, J., Skehel, J., Grosveld, F.: Expression cloning and production of human heavy-chain-only antibodies from murine transgenic plasma cells. Front. Immunol. 7, 619 (2016)

    Article  Google Scholar 

  4. Tiller, K.E., Tessier, P.M.: Advances in antibody design. Annu. Rev. Biomed. Eng. 17, 191–216 (2015). https://doi.org/10.1146/annurev-bioeng-071114-040733

    Article  Google Scholar 

  5. Trevino, S.R., Scholtz, J.M., Pace, C.N.: Amino acid contribution to protein solubility: Asp, Glu, and Ser contribute more favorably than the other hydrophilic amino acids in RNase Sa. J. Mol. Biol. 366(2), 449–460 (2007)

    Article  Google Scholar 

  6. McMahon, C., Baier, A.S., Pascolutti, R., Wegrecki, M., Zheng, S., Ong, J.X., Erlandson, S.C., Hilger, D., Rasmussen, S.G.F., Ring, A.M., Manglik, A., Kruse, A.C.: Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25(3), 289–296 (2018). https://doi.org/10.1038/s41594-018-0028-6

    Article  Google Scholar 

  7. Norman, R.A., Ambrosetti, F., Bonvin, A.M., Colwell, L.J., Kelm, S., Kumar, S., Krawczyk, K.: Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief. Bioinform. (2019)

  8. Uchański, T., Zögg, T., Yin, J., Yuan, D., Wohlkönig, A., Fischer, B., Rosenbaum, D.M., Kobilka, B.K., Pardon, E., Steyaert, J.: An improved yeast surface display platform for the screening of nanobody immune libraries. Sci. Rep. 9(1), 382 (2019)

    Article  ADS  Google Scholar 

  9. Hassanzadeh-Ghassabeh, G., Devoogdt, N., De Pauw, P., Vincke, C., Muyldermans, S.: Nanobodies and their potential applications. Nanomedicine 8(6), 1013–1026 (2013)

    Article  Google Scholar 

  10. Pierce, B.G., Wiehe, K., Hwang, H., Kim, B.-H., Vreven, T., Weng, Z.: ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics 30(12), 1771–1773 (2014)

    Article  Google Scholar 

  11. Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., Vajda, S.: The ClusPro web server for protein–protein docking. Nat. Protoc. 12(2), 255 (2017)

    Article  Google Scholar 

  12. Lefranc, M.P.: IMGT unique numbering for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb. Protoc. 2011(6), 633–642 (2011). https://doi.org/10.1101/pdb.ip85

  13. Bannas, P., Hambach, J., Koch-Nolte, F.: Nanobodies and nanobody-based human heavy chain antibodies as antitumor therapeutics. Front. Immunol. 8, 1603 (2017)

    Article  Google Scholar 

  14. Muyldermans, S.: Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013)

    Article  Google Scholar 

  15. Li, T., Pantazes, R.J., Maranas, C.D.: OptMAVEn–a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes. PLoS One 9(8), e105954 (2014)

    Article  ADS  Google Scholar 

  16. Barderas, R., Desmet, J., Timmerman, P., Meloen, R., Casal, J.I.: Affinity maturation of antibodies assisted by in silico modeling. Proc. Natl. Acad. Sci. U.S.A. 105(26), 9029–9034 (2008)

  17. Mahajan, S.P., Meksiriporn, B., Waraho-Zhmayev, D., Weyant, K.B., Kocer, I., Butler, D.C., Messer, A., Escobedo, F.A., DeLisa, M.P.: Computational affinity maturation of camelid single-domain intrabodies against the nonamyloid component of alpha-synuclein. Sci. Rep. 8(1), 17611 (2018)

    Article  ADS  Google Scholar 

  18. Zuo, J., Li, J., Zhang, R., Xu, L., Chen, H., Jia, X., Su, Z., Zhao, L., Huang, X., Xie, W.: Institute collection and analysis of nanobodies (iCAN): a comprehensive database and analysis platform for nanobodies. BMC Genomics 18(1), 797 (2017)

    Article  Google Scholar 

  19. Wilton, E.E., Opyr, M.P., Kailasam, S., Kothe, R.F., Wieden, H.-J.: sdAb-DB: the single domain antibody database. ACS Synth. Biol. 7(11), 2480–2484 (2018). https://doi.org/10.1021/acssynbio.8b00407

  20. Katoh, K., Standley, D.M.: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013)

    Article  Google Scholar 

  21. Lassmann, T., Frings, O., Sonnhammer, E.L.: Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res. 37(3), 858–865 (2008)

    Article  Google Scholar 

  22. Notredame, C., Higgins, D.G., Heringa, J.: T-coffee: a novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302(1), 205–217 (2000)

    Article  Google Scholar 

  23. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J.: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7(1) (2011).

  24. Okonechnikov, K., Golosova, O., Fursov, M., Team, U.: Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8), 1166–1167 (2012)

    Article  Google Scholar 

  25. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J.: Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9), 1189–1191 (2009)

    Article  Google Scholar 

  26. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  Google Scholar 

  27. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  28. Isralewitz, B., Gao, M., Schulten, K.: Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struc Biol 11(2), 224–230 (2001)

    Article  Google Scholar 

  29. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statist. 22(1), 79–86 (1951). https://doi.org/10.1214/aoms/1177729694

    Article  MathSciNet  MATH  Google Scholar 

  30. Vuong, Q.V., Nguyen, T.T., Li, M.S.: A new method for navigating optimal direction for pulling ligand from binding pocket: application to ranking binding affinity by steered molecular dynamics. J. Chem. Inf. Model. 55(12), 2731–2738 (2015)

    Article  Google Scholar 

  31. Truong, D.T., Li, M.S.: Probing the binding affinity by Jarzynski’s nonequilibrium binding free energy and rupture time. J. Phys. Chem. B 122(17), 4693–4699 (2018)

    Article  Google Scholar 

  32. Wade, M., Li, Y.C., Wahl, G.M.: MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13(2), 83–96 (2013). https://doi.org/10.1038/nrc3430

    Article  Google Scholar 

  33. Karni-Schmidt, O., Lokshin, M., Prives, C.: The roles of MDM2 and MDMX in cancer. Annu. Rev. Pathol. 11, 617–644 (2016). https://doi.org/10.1146/annurev-pathol-012414-040349

    Article  Google Scholar 

  34. Yu, G.W., Vaysburd, M., Allen, M.D., Settanni, G., Fersht, A.R.: Structure of human MDM4 N-terminal domain bound to a single-domain antibody. J. Mol. Biol. 385(5), 1578–1589 (2009). https://doi.org/10.1016/j.jmb.2008.11.043

    Article  Google Scholar 

  35. Pinto, J., Odongo, S., Lee, F., Gaspariunaite, V., Muyldermans, S., Magez, S., Sterckx, Y.G.-J.: Structural basis for the high specificity of a Trypanosoma congolense immunoassay targeting glycosomal aldolase. PLoS Negl. Trop. Dis. 11(9), e0005932 (2017)

  36. De Genst, E., Chan, P.-H., Pardon, E., Hsu, S.-T.D., Kumita, J.R., Christodoulou, J., Menzer, L., Chirgadze, D.Y., Robinson, C.V., Muyldermans, S.: A nanobody binding to non-amyloidogenic regions of the protein human lysozyme enhances partial unfolding but inhibits amyloid fibril formation. J. Phys. Chem. B 117(42), 13245–13258 (2013)

    Article  Google Scholar 

  37. Vangone, A., Spinelli, R., Scarano, V., Cavallo, L., Oliva, R.: COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics 27(20), 2915–2916 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysima Hacisuleyman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacisuleyman, A., Erman, B. ModiBodies: A computational method for modifying nanobodies in nanobody-antigen complexes to improve binding affinity and specificity. J Biol Phys 46, 189–208 (2020). https://doi.org/10.1007/s10867-020-09548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-020-09548-3

Keywords

Navigation