Skip to main content
Log in

Comparative studies on the interaction between biogenic polyamines and bovine intestinal alkaline phosphatases: spectroscopic and theoretical approaches

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this work, the effect of two organic polyamines (spermine and spermidine) on the fluorescence intensity and activity of bovine intestinal alkaline phosphatase (BIALP) are investigated. The interaction of BIALP with spermine and spermidine was studied in a diethanolamine buffer with 0.5 mM magnesium chloride (pH 9.8) and at two temperatures by using the fluorescence quenching method. Furthermore, the activity of enzyme was studied using UV–Vis spectrophotometry in a diethanolamine buffer with 0.5 mM magnesium chloride, at 37 °C, in the absence and presence of different concentrations of each polyamine (0–5 mM). It was demonstrated that both polyamines quenched the intrinsic fluorescence of BIALP by the static quenching process. Based on these results, the values of the binding site for both polyamines were close to each other and decreased by increasing the temperature. The calculated thermodynamic parameters (ΔH° < 0 and ΔS° < 0) also showed that the acting forces in the formation of the complex between BIALP and polyamines were hydrogen bonds and van der Waals forces with an overall favorable Gibbs free energy change (∆G° < 0). In addition, kinetic studies revealed that these polyamines enhanced the enzyme activity of BIALP in a concentration-dependent manner. This result also indicated that spermine had more of an effect on BIALP activity in the same condition. Also, molecular docking as well as thermodynamic parameters showed that hydrogen bonds and van der Waals forces played an important role in the stabilization of BIALP–polyamine complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thomas, T., Tajmir-Riahi, H., Thomas, T.: Polyamine–DNA interactions and development of gene delivery vehicles. Amino Acids 48(10), 2423–2431 (2016)

    Article  Google Scholar 

  2. Chanphai, P., Thomas, T., Tajmir-Riahi, H.: Conjugation of biogenic and synthetic polyamines with serum proteins: a comprehensive review. Int. J. Biol. Macromol. 92, 515–522 (2016)

    Article  Google Scholar 

  3. Chowhan, R.K., Singh, L.R.: Polyamines in modulating protein aggregation. J. Proteins Proteomics 3(2), 141–150 (2013)

  4. Kudou, M., Shiraki, K., Fujiwara, S., Imanaka, T., Takagi, M.: Prevention of thermal inactivation and aggregation of lysozyme by polyamines. Eur. J. Biochem. 270(22), 4547–4554 (2003)

    Article  Google Scholar 

  5. Oshima, T., Hamasaki, N., Senshu, M., Kakinuma, K., Kuwajima, I.: A new naturally occurring polyamine containing a quaternary ammonium nitrogen. J. Biol. Chem. 262(25), 11979–11981 (1987)

    Google Scholar 

  6. Coleman, J.E.: Structure and mechanism of alkaline phosphatase. Annu. Rev. Biophys. Biomol. Struct. 21(1), 441–483 (1992)

  7. McComb, R.B., Bowers Jr, G.N., Posen, S.: Alkaline phosphatase. Springer Science & Business Media, New York (2013)

  8. Kim, E.E., Wyckoff, H.W.: Reaction mechanism of alkaline phosphatase based on crystal structures: two-metal ion catalysis. J. Mol. Biol. 218(2), 449–464 (1991)

    Article  Google Scholar 

  9. Zalatan, J.G., Fenn, T.D., Herschlag, D.: Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. J. Mol. Biol. 384(5), 1174–1189 (2008)

    Article  Google Scholar 

  10. Kozlenkov, A., Manes, T., Hoylaerts, M.F., Millán, J.L.: Function assignment to conserved residues in mammalian alkaline phosphatases. J. Biol. Chem. 277(25), 22992–22999 (2002)

    Article  Google Scholar 

  11. Bock, J.L.: The new era of automated immunoassay. Am. J. Clin. Pathol. 113(5), 628–646 (2000)

    Article  Google Scholar 

  12. Jablonski, E., Moomaw, E.W., Tullis, R.H., Ruth, J.L.: Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use hybridization probes. Nucleic Acids Res. 14(15), 6115–6128 (1986)

    Article  Google Scholar 

  13. Christenson, R.H.: Biochemical markers of bone metabolism: an overview. Clin. Biochem. 30(8), 573–593 (1997)

    Article  Google Scholar 

  14. Attri, P., Venkatesu, P., Lee, M.-J.: Influence of osmolytes and denaturants on the structure and enzyme activity of α-chymotrypsin. J. Phys. Chem. B. 114(3), 1471–1478 (2010)

    Article  Google Scholar 

  15. Venkatesu, P., Lee, M.-J.: Lin, H.-m.: Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state. Arch. Biochem. Biophys. 466(1), 106–115 (2007)

    Article  Google Scholar 

  16. Rezaei-Ghaleh, N., Ebrahim-Habibi, A., Moosavi-Movahedi, A.A., Nemat-Gorgani, M.: Effect of polyamines on the structure, thermal stability and 2, 2, 2-trifluoroethanol-induced aggregation of α-chymotrypsin. Int. J. Biol. Macromol. 41(5), 597–604 (2007)

    Article  Google Scholar 

  17. Kurinomaru, T., Kameda, T., Shiraki, K.: Effects of multivalency and hydrophobicity of polyamines on enzyme hyperactivation of α-chymotrypsin. J. Mol. Catal. B Enzym. 115, 135–139 (2015)

    Article  Google Scholar 

  18. Hamada, H., Takahashi, R., Noguchi, T., Shiraki, K.: Differences in the effects of solution additives on heat-and refolding-induced aggregation. Biotechnol. Prog. 24(2), 436–443 (2008)

    Article  Google Scholar 

  19. Zhao, X., Hao, F., Lu, D., Liu, W., Zhou, Q., Jiang, G.: Influence of the surface functional group density on the carbon-nanotube-induced α-chymotrypsin structure and activity alterations. ACS Appl. Mater. Interfaces 7(33), 18880–18890 (2015)

    Article  Google Scholar 

  20. Liu, X., Shang, L., Jiang, X., Dong, S., Wang, E.: Conformational changes of β-lactoglobulin induced by anionic phospholipid. Biophys. Chem. 121(3), 218–223 (2006)

    Article  Google Scholar 

  21. Viseu, M.I., Carvalho, T.I., Costa, S.M.: Conformational transitions in β-lactoglobulin induced by cationic amphiphiles: equilibrium studies. Biophys. J. 86(4), 2392–2402 (2004)

    Article  ADS  Google Scholar 

  22. Farhadian, S., Shareghi, B., Saboury, A.A.: Exploring the thermal stability and activity of alpha-chymotrypsin in the presence of spermine. J Biomol Struct Dyn 35(2), 435–448 (2017)

  23. Shpigelman, A., Israeli, G., Livney, Y.D.: Thermally-induced protein–polyphenol co-assemblies: beta lactoglobulin-based nanocomplexes as protective nanovehicles for EGCG. Food Hydrocoll. 24(8), 735–743 (2010)

    Article  Google Scholar 

  24. Mi, R., Hu, Y.-J., Fan, X.-Y., Ouyang, Y., Bai, A.-M.: Exploring the site-selective binding of jatrorrhizine to human serum albumin: Spectroscopic and molecular modeling approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 163–169 (2014)

    Article  ADS  Google Scholar 

  25. Li, D., Ji, B., Jin, J.: Spectrophotometric studies on the binding of vitamin C to lysozyme and bovine liver catalase. J. Lumin. 128(9), 1399–1406 (2008)

    Article  Google Scholar 

  26. Taheri-Kafrani, A., Asgari-Mobarakeh, E., Bordbar, A.-K., Haertlé, T.: Structure–function relationship of β-lactoglobulin in the presence of dodecyltrimethyl ammonium bromide. Colloids Surf. B: Biointerfaces 75(1), 268–274 (2010)

    Article  Google Scholar 

  27. Murphy, J.E., Tibbitts, T.T., Kantrowitz, E.R.: Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. J. Mol. Biol. 253(4), 604–617 (1995)

    Article  Google Scholar 

  28. Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18(15), 2714–2723 (1997)

    Article  Google Scholar 

  29. Sun, Y., Wei, S., Yin, C., Liu, L., Hu, C., Zhao, Y., Ye, Y., Hu, X., Fan, J.: Synthesis and spectroscopic characterization of 4-butoxyethoxy-N-octadecyl-1, 8-naphthalimide as a new fluorescent probe for the determination of proteins. Bioorg. Med. Chem. Lett. 21(12), 3798–3804 (2011)

    Article  Google Scholar 

  30. Pan, B., Liu, Y., Xiao, D., Wu, F., Wu, M., Zhang, D., Xing, B.: Quantitative identification of dynamic and static quenching of ofloxacin by dissolved organic matter using temperature-dependent kinetic approach. Environ. Pollut. 161, 192–198 (2012)

    Article  Google Scholar 

  31. Xue, J.-J., Chen, Q.-Y.: The interaction between ionic liquids modified magnetic nanoparticles and bovine serum albumin and the cytotoxicity to HepG-2 cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 120, 161–166 (2014)

    Article  Google Scholar 

  32. Wang, Y., Zhang, G., Wang, L.: Interaction of prometryn to human serum albumin: insights from spectroscopic and molecular docking studies. Pestic. Biochem. Physiol. 108, 66–73 (2014)

    Article  Google Scholar 

  33. Vignesh, G., Arunachalam, S., Vignesh, S., James, R.A.: BSA binding and antimicrobial studies of branched polyethyleneimine–copper (II) bipyridine/phenanthroline complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 96, 108–116 (2012)

    Article  ADS  Google Scholar 

  34. Zhang, M.-F., Xu, Z.-Q., Ge, Y.-S., Jiang, F.-L., Liu, Y.: Binding of fullerol to human serum albumin: spectroscopic and electrochemical approach. J. Photochem. Photobiol. B 108, 34–43 (2012)

  35. Tabassum, S., Al-Asbahy, W.M., Afzal, M., Arjmand, F.: Synthesis, characterization and interaction studies of copper based drug with human serum albumin (HSA): spectroscopic and molecular docking investigations. J. Photochem. Photobiol. B Biol. 114, 132–139 (2012)

    Article  Google Scholar 

  36. Koupaei, M.H., Shareghi, B., Saboury, A.A., Davar, F., Semnani, A., Evini, M.: Green synthesis of zinc oxide nanoparticles and their effect on the stability and activity of proteinase K. RSC Adv. 6(48), 42313–42323 (2016)

    Article  Google Scholar 

  37. Igarashi, K., Kashiwagi, K.: Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271(3), 559–564 (2000)

    Article  Google Scholar 

  38. Saeidifar, M., Mansouri-Torshizi, H., Saboury, A.A.: Biophysical study on the interaction between two palladium (II) complexes and human serum albumin by multispectroscopic methods. J. Lumin. 167, 391–398 (2015)

    Article  Google Scholar 

  39. Chen, C., Xiang, B., Yu, L., Wang, T., Zhao, B.: The application of two-dimensional fluorescence correlation spectroscopy on the interaction between bovine serum albumin and paeonolum in the presence of Fe (III). Spectrosc. Lett. 41(8), 385–392 (2008)

    Article  ADS  Google Scholar 

  40. Toprak, M., Aydın, B.M., Arık, M., Onganer, Y.: Fluorescence quenching of fluorescein by merocyanine 540 in liposomes. J. Lumin. 131(11), 2286–2289 (2011)

    Article  Google Scholar 

  41. Suryawanshi, V.D., Anbhule, P.V., Gore, A.H., Patil, S.R., Kolekar, G.B.: A spectral deciphering the perturbation of model transporter protein (HSA) by antibacterial pyrimidine derivative: pharmacokinetic and biophysical insights. J. Photochem. Photobiol. B 118, 1–8 (2013)

  42. Choi, J.-M., Han, S.-S., Kim, H.-S.: Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv. 33(7), 1443–1454 (2015)

    Article  Google Scholar 

  43. Bisswanger, H.: Enzyme Kinetics: Principles and Methods. John Wiley & Sons, Weinheim (2017)

  44. Segel, I.H., Segel, A.H.: Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry. Wiley, New York (1976)

  45. Flynn, A., Jones, D., Man, E., Shipman, S., Tung, S.: The effects of pH on Type VII-NA bovine intestinal mucosal alkaline phosphatase activity. J. Exp. Microbiol. Immunol. 2, 50–56 (2002)

  46. Gao, W.-W., Zhang, F.-X., Zhang, G.-X., Zhou, C.-H.: Key factors affecting the activity and stability of enzymes in ionic liquids and novel applications in biocatalysis. Biochem. Eng. J. 99, 67–84 (2015)

    Article  Google Scholar 

  47. Dean, R.L.: Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations. Biochem. Mol. Biol. Educ. 30(6), 401–407 (2002)

    Article  Google Scholar 

  48. Hu, X., Yu, Z., Liu, R.: Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level. Spectrochim. Acta A Mol. Biomol. Spectrosc. 108, 50–54 (2013)

    Article  ADS  Google Scholar 

  49. Hosseini-Koupaei, M., Shareghi, B., Saboury, A.A., Davar, F.: Molecular investigation on the interaction of spermine with proteinase K by multispectroscopic techniques and molecular simulation studies. Int. J. Biol. Macromol. 94, 406–414 (2017)

    Article  Google Scholar 

  50. Hosseini-Koupaei, M., Shareghi, B., Saboury, A.A., Davar, F., Raisi, F.: The effect of spermidine on the structure, kinetics and stability of proteinase K: spectroscopic and computational approaches. RSC Adv. 6(107), 105476–105486 (2016)

    Article  Google Scholar 

  51. Adinarayana, K., Devi, R.K.: Protein-ligand interaction studies on 2, 4, 6-trisubstituted triazine derivatives as anti-malarial DHFR agents using AutoDock. Bioinformation 6(2), 74–77 (2011)

    Article  Google Scholar 

  52. Bowers, G.N., McComb, R.B., Christensen, R., Schaffer, R.: High-purity 4-nitrophenol: purification, characterization, and specifications for use as a spectrophotometric reference material. Clin. Chem. 26(6), 724–729 (1980)

    Google Scholar 

  53. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  Google Scholar 

  54. Sali, A., Blundell, T.: Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234(3), 779–815 (1993)

    Article  Google Scholar 

  55. SchuÈttelkopf, A.W., Van Aalten, D.M.: PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60(8), 1355–1363 (2004)

    Article  Google Scholar 

  56. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comb. Chem. 30(16), 2785–2791 (2009)

    Article  Google Scholar 

Download references

Funding

This study was funded by the University of Shahrekord, Shahrekord, Iran

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Shareghi.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehian, P., Shareghi, B. & Hosseini-Koupaei, M. Comparative studies on the interaction between biogenic polyamines and bovine intestinal alkaline phosphatases: spectroscopic and theoretical approaches. J Biol Phys 45, 89–106 (2019). https://doi.org/10.1007/s10867-018-9517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9517-4

Keywords

Navigation